2506/306 2507/306 DATA AND COMPUTER NETWORKS June/July 2018 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN AERONAUTICAL ENGINEERING (AIRFRAMES & ENGINES OPTION) (AVIONICS OPTION)

MODULE III

DATA AND COMPUTER NETWORKS

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:
Answer booklet;
Non-programmable Scientific calculator.
Answer FIVE of the EIGHT questions in this paper.
All questions carry equal marks.
Maximum marks for each part of a question are as indicated.
Candidates should answer the questions in English.

This paper consists of 5 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

- Define the following terms as applied in data communication: (a) bandwidth; (i) (ii) data rate; (iii) noise: (iv) error rate. (4 marks) In reference to data communication, differentiate between point-to-point and (b) (4 marks) multi-point links, stating an example in each case. Draw a block diagram of a typical data communication model and explain its (c) constituents. (8 marks) With the aid of a block diagram describe a distributed network. (4 marks) (d) (a) (i) Distinguish between asynchronous and synchronous transmission with respect to data communication. (ii) With the aid of a block diagram, explain parallel transmission as applied to data communication. (8 marks) Draw a block diagram of a pulse code modulation (PCM) and state functions of each (b) block. (8 marks) (c) A noiseless channel has a bit rate of 265 kbps with a bandwidth of 20 kHz. Determine the number of signal levels required for the channel. (4 marks) 3. (a) transmission. (i) Explain the checksum error detection technique. (b)
 - Describe the Huffman FEC (forward error correction technique) method as used in data (4 marks)
 - A total of 128 capital A letters are sent across a communication link, given that (ii) the 7 bit ASCII code for the capital letter A is 1000001, Calculate the checksum to send for error detection.

(10 marks)

- A signal travels through a cable from a point A to point B. Determine: (c)
 - the attenuation of the signal if at point B, the power is found to have reduced by (i) a half;
 - the power of the signal at a point 5 km away from point B, if the power at B is (ii) 2 mW. (Assume attenuation of the cable is in decibels per kilometer (dB/km)). (6 marks)

- (a) Define the following terms in relation to data communication:
 - (i) packetization;
 - (ii) encapsulation.

(4 marks)

(b) Contrast packet switching and circuit switching.

(4 marks)

- (c) With the aid of a block diagram, explain the operation of a virtual circuit network.

 (6 marks)
- (d) (i) Explain rooting table as applied in datagram network. (2 marks)
 - (ii) Two buildings are connected using a T-1 line leased from a communication service provider which has two 2 × 4 I/O switches. Each I/O switch has 2 outputs folded into the input port to allow communication. Draw a schematic diagram to realise this. (4 marks)
- 5. (a) Explain the following as applied in multiplexing:
 - (i) channel;
 - (ii) pulse staffing.

(4 marks)

- (b) Outline three distinguishing features between synchronous time division multiplexing and statistical time multiplexing. (6 marks)
- (c) A voice channel of 2800 Hz bandwidth is used for transmission of data over a telephone line with a signal to noise ratio of 20 dB. Determine the channel capacity in bits/sec.

 (6 marks)
- (d) In a multiplexed system, there are eight sources, each creating 250 characters per second. If the interleaved unit is a character and 1 synchronizing bit is added to each frame. Determine:
 - (i) data rate of each source (in kbps);
 - (ii) duration of each character in each source (in mS).

(4 marks)

- Outline two functions of each of the following standard bodies concerned with data communication:
 - (i) Communications Authority of Kenya (CAK)/CCK;
 - (ii) Institute of Electrical and Electronic Engineers (IEEE).

(4 marks)

- (b) (i) With the aid of a diagram in each case, explain the following LAN topologies:-
 - (I) bus topology;
 - (II) ring topology.
 - (ii) Outline two demerits for each case in b (i).

(16 marks)

- 7. (a) Outline four functions of each of the following LAN hardware devices:-
 - (i) Network Interface Card (NIC);
 - (ii) hub;
 - (iii) switch;
 - (iv) bridge.

(8 marks)

- (b) A 1 Mbps link transmitting bits of frame length 8000 bits, established between two ground stations via a Geo stationery relay, at an altitude of 36,000 km. Determine the:
 - (i) length of the link in bits;
 - (ii) number of frames for the link;
 - (iii) total time for transmission of the frame.

(12 marks)

- (a) (i) Differentiate between lossy and lossless data compression techniques.
 - (ii) Explain the run length encoding data compression method.

(6 marks)

- (b) Highlight the difference between intraframe and interframe MPEG compression standard. (2 marks)
- (c) (i) Describe coding efficiency as applied to data compression.
 - (ii) Table 1 shows data obtained from a data compression using Shannon-Fano codes.

Table 1

Message Uncompressed for messages A 000	Codes probability of occurrence 0.4	Compressed codes for messages				
001	0.2	1	0			
010	0.2	1	1			
011		1	1	1		
100		1	1	1	0	
		1	1	1	1	0
	000 001 010 011 100	messages of occurrence 000 0.4 001 0.2 010 0.2 011 0.1 100 0.06	messages of occurrence me 000 0.4 0 001 0.2 1 010 0.2 1 011 0.1 1 100 0.06 1	messages of occurrence messag 000 0.4 0 001 0.2 1 0 010 0.2 1 1 011 0.1 1 1 100 0.06 1 1	messages of occurrence messages 000 0.4 0 001 0.2 1 0 010 0.2 1 1 0 011 0.1 1 1 1 1 100 0.06 1 1 1 1	messages of occurrence messages 000 0.4 0 001 0.2 1 0 010 0.2 1 1 0 011 0.1 1 1 1 1 0 100 0.06 1 1 1 1 1 1

Using the table, determine the:

- (I) average number of bits per source message;
- (II) coding efficiency.
- (iii) Outline two demerits of using Shannon-Fano coding in data compression.
 (12 marks)

THIS IS THE LAST PRINTED PAGE.