2207/303 COMMUNICATION AND NAVIGATION SYSTEMS June/July 2018 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN AERONAUTICAL ENGINEERING (AVIONICS) (COMMUNICATION AND NAVIGATION OPTION)

COMMUNICATION AND NAVIGATION SYSTEMS

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet;

Mathematical tables/non-programmable scientific calculators.

Answer any FIVE of the EIGHT questions in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as shown.

Candidates should answer the questions in English.

This paper consists of 5 printed pages.

Candidates should check the question paper to ascertain that all pages are printed as indicated and that no questions are missing.

- 1. (a) (i) State the **two** functions of the i.f. amplifier stage in a radio receiver.
 - (ii) With the aid of a labelled block diagram, describe the operation of a double superheterodyre radio receiver. (11 marks)
 - (b) Figure 1 refers to a radio receiver circuit. If the signal $V_1 = V_1 \sin 1800\pi \times 10^3 t$ volts and $V_2 = V_2 \sin 2710\pi \times 10^3 t$ volts, determine the frequency of the:
 - (i) output signal;
 - (ii) image signal.

(6 marks)

(c) Explain receiver blocking with respect to a radio receiver.

(3 marks)

- (a) (i) List two causes of losses in an antenna.
 - (ii) Table 1 shows data for an antennna array.
 - I. Plot the response curve;
 - II. Determine the change in gain between the 3rd and 6th directors.

(6 marks)

Table 1				1.			1	
Number of Directors	0	1	2	3	4	5	6	7
Gain (dB)	1.8	4.1	6	7.4	8.1	8.6	8.9	9

(b) A 4-element folded dipole Yagi antenna array operates at 750 MHz. Draw the array showing all the dimensions. (10 marks)

$$H = \frac{Idl}{4\pi} \sin\theta \left[\frac{\omega}{CD} \cos\omega \left(t - \frac{D}{C} \right) + \frac{1}{D^2} \sin\omega \left(t - \frac{D}{C} \right) \right] At / M$$

Explain the two fields forming the wave.

(4 marks)

- (a) Explain the following as applied to radio navigation aids:
 - (i) surveillance radar equipment;
 - (ii) precision approach radar.

(6 marks)

- (b) With the aid of a labelled diagram, describe the operation of an Instrument Landing System (ILS). (7 marks)
- (c) A 7 GHz radar system operating over a bandwidth of 800 kHz, uses an amplifier whose noise figure is 12 dB. If the target cross-sectional area is 4 m² and the antenna diameter is 1.5 m, determine the radiated power over a range of 60 km. (7 marks)

- (a) Describe frequency division multiple access (FDMA) with respect to satellite communication. (3 marks)
- (b) With the aid of a labelled block diagram, describe the operation of the power subsystem of a space satellite. (6 marks)
- (c) (i) An earth station operating at 6 GHz uses an antenna whose mouth diameter is 24 m with an efficiency of 68%. If the system noise temperature is 82 K, determine the earth station $\frac{G}{T}$ ratio.
 - (ii) Determine the free space pathloss (in dB) for a satellite link operating at 600 MHz if the link is 36,000 km long. (11 marks)
- 5. (a) (i) List two advantages of the star network topology over the ring topology.
 - (ii) With the aid of labelled diagrams, distinguish between half-duplex and full-duplex data transmission modes. (8 marks)
 - (b) With the aid of a response curve, explain slope overload distortion as applied to delta modulation systems. (4 marks)
 - (c) An a.f. signal $6\sin 3\pi \times 10^6 t$ volts is transmitted by Pulse Code Modulation using 512 coding levels. Determine the:
 - (i) number of bits required;
 - (ii) signal-to-quantization noise ratio;
 - (iii) Nyquist sampling rate.

(8 marks)

- (a) (i) List **two** merits of optical fibers over coaxial cables.

 (ii) I. Draw a labelled block diagram of an optical fiber communication
 - system.

 II. Describe the operation of the system in (a)(ii)(I.) (10 marks)
 - (b) With the aid of a labelled construction diagram, describe the operation of a photodiode.

 (6 marks)
 - (c) An optical fiber has a core of refractive index of 1.72 and cladding refractive index of 1.60. Determine the:
 - (i) critical angle;
 - (ii) maximum angle of incidence.

(4 marks)

- 7. (a) (i) Define each of the following as applied to waveguides:
 - I. phase velocity;
 - II. cut-off wavelength;
 - (ii) Figure 2 shows the input waveforms to a parametric amplifier.
 - I. Draw the output signal.
 - II. Describe its shape.

(6 marks)

Fig. 2

- (b) With the aid of a labelled diagram, describe the operation of a laser diode.
- (c) The internal dimensions of a rectangular waveguide, operating at 18 GHz, are 0.85 cm x 0.4 cm. Determine the:
 - (i) cut-off wavelength;
 - (ii) group velocity;
 - (iii) wave impedance.

(7 marks)

(7 marks)

- 8. (a) (i) Define each of the following with respect to radio transmitters:
 - I. efficiency in amplitude modulation systems:
 - II. modulation index in frequency modulation systems.
 - (ii) With the aid of a labelled block diagram, describe the operation of a sideband drive unit used to generate an independent sideband signal. (8 marks)
 - (b) The parameters of an FM system are:

 Modulation index = 8

 Bandwidth = 170 kHz

Determine the frequency deviation. $\mathbb{R}^{\omega} = \lambda(y + t_{\infty})$

(4 marks)

- (c) A varactor diode frequency modulator has a self capacitance of 60 pF with the tuned circuit capacitance being 220 pF. If the transmission frequency is 92 MHz, determine the:
 - (i) tuned circuit inductance;
 - (ii) change in diode capacitance when the transmission frequency is changed to 95 MHz. (8 marks)

THIS IS THE LAST PRINTED PAGE.