

EAST AFRICAN SCHOOL OF AVIATION END OF TERM EXAMINATIONS

SUBJECT: THEORY OF FLIGHT
DIPLOMA IN AERONAUTICAL ENGINEERING (A\&E OPTION)
STREAM: MODULE II(MARCH)
Date: 011/04/2017
Duration: 3 hrs
Time: 0900a.m.-1200p.m.

INSTRUCTIONS TO CANDIDATE

1. This paper consists of EIGHT questions
2. Any FIVE questions carry equal marks
3. Answer all questions in the space provided in this paper.
4. (a) Explain the effect of weight of the following:
(i) Take off Distance
(ii) Stalling Speed (10marks)
(b) Differentiate between absolute ceiling and service ceiling. (4marks)
(c) What is the effect of Altitude on the minimum and maximum speeds of an Aeroplane.
(6marks)
5. With the aid of sketches, explain the effects of the following factors on the power curves of a propeller aircraft.
(i) Altitude
(ii) Aircraft Weight
(iii) Engine settings (20marks)
6. (a) Twin jet engine aeroplane whose mass is $150,000 \mathrm{~kg}$ is established on a climb with engines operating L/D ratio is $10: 1$. Each engine has a Thrust of $120,000 \mathrm{~N}$. Calculate the climb angle and gradient of climb, given $\mathrm{G}=10 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. (14marks)
(b) With the aid of sketches, show the forces acting on an Aircraft in climbing mode.
(6marks)
7. Explain the following with the aid of a labeled diagram:
(i) T.O.D.A.
(ii) T.O.R.A.
(ii) A.S.D.A.
(iv) Stopway

(20marks)

5. An Aircraft with a climb gradient of 15.7% with all engines operating, will be 314 ft higher after travelling 2000ft horizontally, but the one engine inoperative climb gradient is 3.7%. What will be the height gain with a 3.7% gradient. Illustrate your answer.
6. Following a take off, a light twin engine aeroplane has a 10% climb gradient. By how much will it clear a 900meter high obstacle situated 9740 meter from the end of the take off distance available.(20marks)
7. The normal climbing speed of a certain propeller Aircraft if mass 2500 kg is $56.5 \mathrm{~m} / \mathrm{s}$. At this speed, the power required is 210 KW . If the maximum power available from the propeller is 375 KW , calculate the angle of climb and the rate of climb (20marks
8. The following table gives data of a certain propeller Aircraft of mass 1050 Kg .

On the same axis plot the graph of Power available and Power required versus Airspeed. From the graph estimate the following.
i) The minimum speed for level flight
ii) The maximum speed for level flight
iii) The speed for maximum range
iv) The speed for maximum endurance
(20marks)

Airspeed (m/s)	23.1	25.7	28.3	30.8	33.4	36.0	38.6	41.1	43.7	46.3	48.8	51.4
Power Available (KW)	135	170	205	225	240	250	255	255	250	240	230	220
Power Required (KW)	250	115	93	90	100	120	150	180	215	255	300	350

