

EAST AFRICAN SCHOOL OF AVIATION EXAMINATION

END TERM I
ENGINEERING SECTION

SUBJECT: MICRO CONTROLLER TECHNOLOGY
STREAM: Module III (AVIONICS)
Duration: 2HRS 30 mins
DAY/DATE: 3 ${ }^{\text {rd }}$ April 2017
TIME: 9Am - 12Pm
INSTRUCTION TO CANDIDATES

1. Answer any ALL questions
2. Maximum marks for each part of a question are as shown
3. a) Explain why binary number system is employed in digital systems
b) Fill the conversion table below and show all the workings.

Decimal	Binary	Octal	Hexadecimal
		753.6	
			3 EB
563.2			
	10111100111101		

c) The number CAB_{16} is a two byte. Determine its decimal value if it is in
I. Ones's complement
II. Two's complement
a) (i) Evaluate the following, showing all the working
I. $\mathrm{BEBC}_{16}-94 \mathrm{EF}_{16}$
(ii) Use 8-bit 2's complement arithmetic to evaluate (-37_{10}) - (6910)
(iii) For the one bye number, 10011101_{2}, determine its decimal value if it is in
I. One's complement
II. Two's complement
III. Unsigned
b) State three methods used to represent negative numbers
c) State two advantages of using hexadecimal over binary number systems
(ii) Obtain the standard sum of products (SSOP) form of the following Boolean function $\mathrm{F}=\mathrm{AB}+\mathrm{ACD}{ }^{\prime}+\mathrm{B}^{\prime} \mathrm{D}$
b) For the following Boolean function

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma(0,1,2,3,7,8,9,12,14)
$$

i Draw the truth table
ii Draw a K-map representation of the function
iii Simplify and state the output function as a sum of products
iv Implement the simplified circuit
(11 marks)
a) A function F is defined such that it equals logic 1 when a 4 bit input code is equivalent to any of the decimal numbers $3,6,9,12$ or 15 . F is logic 0 input codes $0,2,8$ and $10 . \mathrm{F}$ is indeterminate for other input values
i Use a truth table and Karnaugh map to determine the minimal expression for this function
ii Implement the minimal expression using
I. NAND gates
II. NOR gates
b) use the Boolean algebra postulates and theorems to minimize the following expressions

$$
\begin{align*}
& \text { iXYZ + X'YZ' }+X^{\prime} Y Z+X Y Z '+X^{\prime} Y^{\prime} Z^{\prime} \\
& \text { ii } A B+B^{\prime}+C A B+A B D \tag{6marks}
\end{align*}
$$

a) State the difference between sequential logic circuit and combinational logic circuits giving an example of each.
b) Using suitable expressions and truth table implement a 1-bit digital comparator
c) With the aid of a truth table and logic expressions, implement a 4-to-line multiplexer (data selector)
d) Perform the following binary arithmetic
i. $\quad 1011011+1011110$
ii. 1011-1101 using two's complement method
iii. 1100 - 10001 using one's complement
(9 marks)

