

EAST AFRICAN SCHOOL OF AVIATION EXAMINATION END TERM I EXAMS

DIPLOMA IN AERONAUTICAL ENGINEERING

Mechanical Technology I
STREAM: Module II (Airframes \& Engines)-March
Duration: 3Hrs
DAY/DATE: $6^{\text {th }}$ April. 2017
TIME: 9.00-12.00 pm
INSTRUCTION TO CANDIDATES
You should have the following for this examination:
Answer booklet;
Mathematical tables / Electronic calculator.
Answer ALL THE QUESTIONS IN SECTION A and SECTION B in this paper
All questions carry equal marks.
Maximum marks for each part of a question are as shown
This paper consists of -4- printed pages.
Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing

SECTION A: STRENGTH OF MATERIALS

Answer ALL questions from this section.

1. (a) State Hooke's law.
(2 marks)
(b) Distinguish between tensile stress and compressive stress.
(2 marks)
(c) Explain FOUR elastic constants used in materials.
(4 Marks)
(c) A steel rod of 2 cm diameter is enclosed centrally in a hollow copper tube of external diameter 4 cm and internal diameter of 3.5 cm . The composite bar is then subjected to an axial pull of 50000 N . If the length of each bar is equal to 20 cm , determine:
(i) The stress in the rod and tube
(ii) Load carried by each bar
(iii) Extension of the bar.

Take E for steel $=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and for copper $=1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$
2. (a) A brass bar having cross-section area of $900 \mathrm{~mm}^{2}$ is subjected to axial forces as shown below. Given that $\mathrm{AB}=0.6 \mathrm{~m}, \mathrm{BC}=0.8 \mathrm{~m}$ and $\mathrm{CD}=1.0 \mathrm{~m}$.

(b) The figure below shows a horizontal bar supported by two suspended vertical wires fixed to a rigid support. A load W is attached to the bar. The left hand side is of copper wire with diameter of 5 mm and the right hand side wire is of steel of 3 mm diameter. The length of both wires is initially 4 m .
(10 marks)

Determine

(a) The position of the weight on the bar so that both the wires extend by the same amount
(b) The load, stresses and elongation in each wire.

Neglect the weight of the bar and take $\mathrm{E}_{\mathrm{S}}=210 \mathrm{GPa}$ and $\mathrm{E}_{\mathrm{C}}=120 \mathrm{GPa}$.
3. (a) Define the following terms as applied in beams.
(i) Shearing force
(ii) Bending moment
(2 marks)
(b) A beam of length 6 m is simply supported at its ends and carries a point load of 5 kN at the centre. Draw the shearing force and bending moment diagrams and also determine the maximum bending moment.

(18 marks)

SECTION B: MECHANICS OF MACHINES

Answer ALL questions from this section
4. a). Define each of the following terms as used in motion.
i. Angular velocity
ii. Linear acceleration
b). Show that the linear velocity v of a body moving round a circular track of radius r , with angular velocity ω is given by the equation $v=r \omega$.
c). The centripetal acceleration of a particle moving along a straight line is zero. Explain.
d). The angular displacement ϑ of a body is a function of time and is given by the equation. $\vartheta=10+3 t+6 t^{2}$, where t is in seconds

Determine the angular velocity, displacement and acceleration of the body when $\mathrm{t}=5 \mathrm{~s}$.
5. a). Define area moment of inertia.
b). State and derive the perpendicular axis theorem.
(4 Marks)
c). Find the second moment of area for the I-section shown below.
(14 Marks)

