

EAST AFRICAN SCHOOL OF AVIATION EXAMINATION

END - TERM II

ENGINEERING SECTION

EXAMINATION FOR THE AWARD OF DIPLOMA IN AERONAUTICAL ENGINEERING

SUBJECT: MATHEMATICS

TREAM: MODULE 2 (AVI \& A/E)
DAY/DATE: Monday: $30 / 3 / 2016$
Duration: 3 Hrs.
TIME: 9.00-12.00 A.M

INSTRUCTIONS TO CANDIDATE:

1. This paper consists of THREE (3) printed pages.
2. All questions carry equal marks.
3. Maximum marks for each part of a question are as shown
4. Attempt any FIVE questions.
5. Cheating will lead to exam cancellation.
6. You should have the following:-

- Mathematical Tables
- Scientific Calculator.

1. (a) Given the matrices $A=\left(\begin{array}{ccc}1 & 2 & -1 \\ 2 & 0 & 3 \\ 0 & 1 & 2\end{array}\right)$ and $B=\left(\begin{array}{ccc}3 & -1 & 1 \\ 0 & 0 & 2 \\ 4 & -3 & 2\end{array}\right)$ Verify the result $(A+B)^{2}=A^{2}+A B+B A+B^{2}$ (8 marks)
(b) The current in an electrical circuit satisfy the simultaneous equations; (12 marks)

$$
\begin{array}{ccc}
3 i_{1}+ & 2 i_{2}+ & i_{3}=-3 \\
i_{1}- & i_{2}+ & 3 i_{3}=-7 \\
4 i_{1}+ & 3 i_{2}+ & 5 i_{3}=-7
\end{array}
$$

Use Cramer's rule to determine the values of the currents.
2. (a) If $A=x^{4} y i+\left(x^{2} y^{2}+y^{3} z\right) j+x^{2} x z^{2} k$. $B=y^{3} z^{2} i-4 x z j+2 x y^{2} k$. $\emptyset(x, y, z)=4 x^{2} y+x y z^{2}+3 y^{2} z^{2}-2$ determine at the point $(-1,1,2)$
i. $\quad \nabla \varnothing$
ii. $\quad \nabla . A$
iii. $\quad \nabla \times B$
(10 marks)
(b) Determine the unit tangent vector at the point $(2,4,7)$ for the curve with parametric equation; $x=2 u, y=u^{2}+3, z=2 u^{2}+5$.
(c) Determine the directional derivative of the scalar field $\emptyset(x, y, z)=x^{2} y+z^{2} y^{2}$ in the direction of the vector $v=-i+3 j-4 k$ at the point $(1,-2,-1)$
3. (a) Given that $z=\sin \frac{y}{x}$ show that $x \frac{d z}{d x}+y \frac{d z}{d y}=0$ (6 marks)
(b) The radius of a cone increases from 10.0 cm to 10.5 cm while its height decreases from 16.0 cm to 15.8 cm . determine the approximate change in value, using partial derivative.
(c) Find the stationary point of the function $f(x y)=x^{3}-6 x y+y^{2}$
4. (a) Solve the following differential equations
i. $\quad 7 x(x-y) d y=2\left(x^{2}+6 x y-5 y^{2}\right) d x$ Given that $x=1$ when $y=0(8$ marks $)$
ii. $\frac{d^{2} y}{d x^{2}}+16 y=10 \cos 4 x$ Given that when $x=0, y=1, \frac{d y}{d x}=8$
5. (a) Show that the Laplace transform of $\left(t^{2} e^{t} \sin 4 t\right)$ is $\frac{8\left(3 s^{2}-6 s-13\right)}{\left(s^{2}-2 s+17\right)^{3}} \quad$ (8 marks)
(b) Use Laplace transform to determine the current $\mathrm{i}_{1}(\mathrm{t})$ in the network of figure 1 assuming that the circuit is dead at $t=0$

Figure 1
6. (a) If $V=x y+y^{2} z$, evaluate $\oint_{C} V d \boldsymbol{r}$ along the curve c defined by $x=t^{2} ; y=2 t$ $; z=t+5$ between $A(0,0,5)$ and $B(4,4,7)$.
(10 marks)
(b) Determine the values of the first partial derivative of the function $z=x \tan ^{-1}\left(\frac{y}{x}\right)$ at the point $(1,0)$
(10marks)

TABLE OF LAPLACE TRANSFORM FORMULAS

$L\left[t^{n}\right]=\frac{n!}{s^{n+1}}$
$L^{-1}\left[\frac{1}{s^{n}}\right]=\frac{1}{(n-a)!} \mathrm{t}^{\mathrm{n}-1}$
$L\left[e^{a t}\right]=\frac{1}{s-a}$ $L^{-1}\left[\frac{1}{s-a}\right]=\mathrm{e}^{\mathrm{at}}$
$L[\sin a t]=\frac{a}{s^{2}+a^{2}}$ $L^{-1}\left[\frac{1}{s^{2}+a^{2}}\right]=\frac{1}{a} \sin a t$
$L[\cos a t]=\frac{s}{s^{2}+a^{2}}$ $L^{-1}\left[\frac{s}{s^{2}+a^{2}}\right]=\frac{1}{a} \cos a t$

First Differentiation Formula

$L\left[f^{(n)}(t)\right]=s^{\mathrm{n}} L[f(t)]-\mathrm{s}^{\mathrm{n}-1} \mathrm{f}(0)-\mathrm{s}^{\mathrm{n}-2} \mathrm{f}^{\prime}(0)-\ldots . . . \mathrm{f}^{(\mathrm{n}-1)}(0)$
$L\left[\int_{0}^{1} f(u) d u\right]=\frac{1}{s} L[f(t)] \quad L^{-1}\left[\frac{1}{s} f(s)\right]=\int_{0}^{t} L^{-1}[F(s)] \mathrm{dt}$
In the following formulas, $\mathrm{F}(s)=L[f(t)]$ so $f(t)=L^{-1}[F(s)]$

First Shift Formula

$L\left[e^{a t} f(t)\right]=\mathrm{F}(\mathrm{s}-\mathrm{a})$

$$
L^{-1}[f(s)]=e^{a t} L^{-1}[f(s+a)]
$$

Second Differentiation Formula

$$
L\left[e^{a l} f(t)\right]=(-1)^{\mathrm{n}} \frac{d^{n}}{d s^{n}} L[f(t)] \quad L^{-1}\left[\frac{d^{n} f(s)}{d s^{n}}\right]=(-1)^{\mathrm{n}} \mathrm{t}^{\mathrm{n}} \mathrm{f}(\mathrm{t})
$$

Second shift Formula

$L\left[u_{a}(t) g(t)\right]=\mathrm{e}^{-\mathrm{as}} L[g(t+a)]$

$$
L^{-1}\left[e^{-a s} F(s)\right]=\mathrm{u}_{\mathrm{a}}(\mathrm{t}) \mathrm{f}(\mathrm{t}-\mathrm{a})
$$

