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Answer any FIVE questions
1. (a) Find the general solution of the differential equation

(4y + 3x) Z—z =3x—y (9 marks)
(b) The displacement x metres of a body fixed from a point 0 at any time t
seconds satisfies the differential equation
%—2%+ 10x = sin 3¢ .

Use the method of undetermined coefficients to find an expression for the

displacement x(t)

(11 marks)

2. (a) show that the solution to the differential equation

(3y? + 4xy)dx + (2xy + x?)dy = 0 takes the form x3y(x + y) = k, where k is a
constant

(9 marks)
(b) Use the method of undetermined coefficients to obtain the general solution of
the differential equation:

2
S22 42y =622 +4 (11 marks)

dx?

3. a) Given that

4 4 =2
M = [—2 4 4 ]
4 -2 4
Verify that MMT=AI, where I is an identity matrix and A is a constant. Hence solve
the equation
Ax1+ 4Xo- 2X3=18
-2X1+ AXo+4X3=6
4Xy - 2Xo+ 4X3 = 12 (10 marks)
(b) If A = x%i + (xy +yz )j + xz?k
B = yzi — 4xzj + 3xyk
Q =3x%y + xyz — 5y?z*> — 4
Determine at the point (1, 3, 1)
V. A
V* B
Curl .curl A (10 marks)

4. (a) Find the Laplace transform of f(t) = sin at cosh at (3 marks)



(b) Find the inverse Laplace transform of ———— (8 marks)

$3-3s2+25—6

(c) Use Laplace transforms to solve the differential equation

%+22—f+2y=4giventhatatt=0,y=0and%=— (9 marks)
5. a) if p=x"y+xz* determine grad ¢ at the point P(1,3,2) (4 marks)
12 3 -2 6 -4
b) if A=|4 6 7|andB=|-1 -6 5
58 9 2 2 -2
Verify that AB=kl where | is a unit matrix and k is a constant. Hence solve the
equations.

X, +2X, +3X; =2
4%, +6X, +7Xy =2
SX, +8X, +9x; =3

(10 marks)
c) Three coplanar vectors are
X =2i—j+3k
Y=ai+2j+k
Z =i-3j+4k
Determine the value of a. (6 marks)

6. a) Given that z = sin(”/y), show that xZ—i + yg—i =0 (4 marks)
b) the deflection y at the center of uniformly loaded plate , suspended at the edge is
given by:

y = KVth“, where W is the load, d is the diameter of the plate, t is the thickness of the

plate and K is a constant. Determine the approximate percentage change iny if W is
increased by 3%, d is decreased by 2% and t is increased by 4% using partial

differentiation. (7 marks)
c) Determine and classify the turning points of the function Z = x2 — 2x — 4y% + 6
(9marks)

7. a) (i) Determine the Taylor’s series for In(a + h) up to and including the term in h®
(if) Hence determine the value of In 12 correct to five decimal places, given that
In10 = 2.30258 (8 marks)
b) (i) Determine the Maclaulin’s series for f(,) = cos®2x up to the term in x°. Hence

(ii) evaluate | 12 x2cos? 2x correct to four decimal places (12 marks)

8. a) Find the general solution of the differential equation
(2xy + 3cosy)dx + (x? — 3xsiny)dy = 0 (6 marks)



: : . da? d .
b) Solve the differential equation ﬁ — 4% + 3y = 2x + e%* , given that Yy = 1and
y! © = 0, by using the method of undetermined coefficients (14 marks)
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