

EAST AFRICAN SCHOOL OF AVIATION EXAMINATION

END TERM EXAMS

DIPLOMA IN AURONAUTICAL ENGINEERING

Engineering Mathematics

STREAM: MODIII(Avionics /Airframes & Engines)

DAY/DATE: 06/04/2017

TIME: 9.00 – 12.00PM

Duration: 3HRS

INSTRUCTION TO CANDIDATES

- 1. This paper consists of FOUR (4) pages
- You should have the following for this examination: Answer booklet; Mathematical tables / Electronic calculator. Smith chart
- 3. Answer ANY FIVE (5) QUESTIONS in this paper

1.(a)If x_n is an approximation root for the equation $4x - 5e^{-x} + 4 = 0$, show using Newton Raphson formula that

A better approximation $x_{n+1} = \frac{5e^{-x_n}(x_{n+1})-4}{4+5e^{-x_n}}$

Taking $x_0 = 1$ obtain the root of the equation (10marks)

(b) The table below gives some values recorded from an experiment

Х	0.0	0.1	0.2	0.3	0.4	0.5	0.6
f(x)	1.000	0.991	0.952	0.973	1.384	2.875	6.616

Use Gregory Newton formula of interpolation to evaluate correct to four decimal places

(i) f (- 0.26) (ii) f (0.52)

(10marks)

2. Sketch the graph of the function

$$f(t) = \begin{cases} \frac{t^2}{\pi} & 0 \le t \le \pi\\ 2\pi - t & \pi \le t \le 2\pi\\ f(t + 2\pi) \end{cases}$$

in the interval $-2\pi < t < 2\pi$ and hence

- i. Calculate its 3rd percentage harmonic
- ii. Find its Fourier series representation

(20 marks)

3. (a) Taking -1.2 as the first approximation to the negative root of the equation $14x^3 - 11x^2 + 22 = 0$, use Newton-Raphson method to evaluate the root correct to four decimal places

(8 marks)

(b) Table below shows data obtained in an experiment. Use Gregory- Newton interpolation formulae to evaluate (12 marks)

- I. f(-0.35)
- II. f(x)

t	-0.5	-0.3	-0.1	0.1	0.3	0.5	0.7
f(t)	2.125	0.813	-0.189	-0.131	-0.147	0.525	2.653

4. Sketch the graph of the function

$$F_{(t)} = t^2 - 4t + 3 = 0 < t < 4$$

F (t + 4)

In the interval -4 < t < 8 and hence.

Find its Fourier series representation

Use the above results to show that

$$\frac{\pi^2}{6} \sum_{n=1}^{\infty} \frac{1}{n^2}$$

Determine the value of a.

(20marks)

5. Determine the eigen values and eigen vectors for the equation Ax = x where

$$A = \begin{bmatrix} 2 & 0 & 1 \\ -1 & 4 & -1 \\ -1 & 2 & 0 \end{bmatrix}$$
 (20marks)

- 6. a) Given the matrix $M = \begin{bmatrix} 2 & -1 \\ 2 & 5 \end{bmatrix}$ find the eigen values and the corresponding eigen vectors of the matrix of M. (12marks)
- b) Find the eigen values of the matrix $\begin{bmatrix} 1 & 4 & -1 \\ -1 & 6 & -1 \\ 2 & -2 & 4 \end{bmatrix}$ (8marks) 7.a) Given that $z = x^2 + ay^2 2xy + j(bx^2 y^2 + 2xy)$ is analytic determine the

values of a and b (6marks)

b) Given the function $u(x, y) = x^2 - y^2 + x$ show that

- u is harmonic i.
- Determine a harmonic conjugate function v(x,y) such that f(z) = u + jvii. (14marks)
- 8. a) Show that the function $W = z^2$ is regular (4marks) b) find the image in the W-plane of the circle |z| = 2 under the transformation $\frac{2z+j}{z-3j}$ (16marks)