

EAST AFRICAN SCHOOL OF AVIATION EXAMINATION END TERM I EXAMS
 DIPLOMA IN AERONAUTICAL ENGINEERING
 Electronics and Control Systems

STREAM: Module II March (Airframes \& Engines)
Duration: 3 Hrs
DAY/DATE: 04/04/2017
TIME: 9-12 PM
INSTRUCTION TO CANDIDATES
You should have the following for this examination:
i) Answer booklet
ii) Mathematical table/ scientific calculator

Answer ANY THREE QUESTIONS IN SECTION A and ALL IN-SECTION B in this paper
All questions carry equal marks.
Maximum marks for each part of a question are as shown

This paper consists of Five (5) printed pages.
Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

SECTION A (Electronics)

Answer any THREE questions from this Section.

1. (a) Explain the salient feature of Bohr's atomic model.
(b) Draw and explain the V-I characteristics of a pn junction.
(c) With the aid of diagram explain the operation of a transistor as an amplifier ($\mathbf{6}$ marks)
(d) A transistor is connected in CE configuration in which collector supply is 8 V and the voltage drop across resistance R_{C} connected in the collector circuit is 0.5 V . The value of $\mathrm{R}_{\mathrm{C}}=800 \Omega$. If $\alpha=0.96$ determine;
i. Collector- emitter voltage
ii. Base current.
2. (a) Explain why is the energy of an electron more in higher orbits.
(b) Explain the concept of energy bands in solids.
(c) With the aid of diagram state Three possible transistor connection.
(d) An n-p-n transistor at room temperature has its emitter disconnected. A voltage of 5 V is applied between collector and base. With collector, positive, a current of $0.2 \mu \mathrm{~A}$ flows. When the base is disconnected and the same voltage is applied between collector and emitter, the current is found to be $20 \mu \mathrm{~A}$. Find $\alpha, \mathrm{I}_{\mathrm{E}}$ and I_{B} when collector current is 1 mA .
3. (a) Describe the following with the help of energy level diagram
i. Valance band
ii. Conduction band
iii. Forbidden energy gap.
(b) Draw and explain the input and output characteristics of CB connection. (4 marks)
(c) Determine V_{CB} in the transistor circuit shown in the Figure 1. The transistor is of silicon and has $\beta=150$.

Figure 1
4. (a) Describe the following with the help of energy level diagram;
i. Conductor
ii. Insulator
iii. Semiconductor.
(6 marks)
(b) Distinguish between the following term as applied in semiconductor;
i. Intrinsic and Extrinsic
ii. Majority and Minority Carriers.
(c) Determine the Q point of the transistor circuit shown in Figure 2. Also draw the d.c. load line. Given $\beta=200$ and $\mathrm{VBE}=0.7 \mathrm{~V}$.

Figure 2
5. (a) State Two properties of semiconductors.
(b) Discuss the effect of temperature on semiconductors.
(c) Draw a transistor dc load line and explain the following terms;
i. Q-point
ii. Cut-off point
iii. Saturation point.
(d) With the aid of a diagram explain the principle of operation of the following devices;
i. Zener Diodes
ii. Bipolar Junction Transistor

SECTION B (Control Systems)

Answer ALL questions from this Section

6. a) Define the following terms as used in control systems: -
i. Manipulated input.
ii. Hybrid systems.
iii. Actuator element.
b) State any four advantages of a closed loop control system
c) From first principle, show that the overall transfer functions of closed loop system with positive feedback is given by: -

$$
\begin{equation*}
\frac{X_{S}}{Y_{S}}=\frac{G(S)}{1-G(S) H(S)} \tag{5marks}
\end{equation*}
$$

d) Draw a block diagram and state all the elements and signals of the basic structure of a feedback control system.
7. a) Reduce the following system into canonical form hence give the overall transfer function using: -
i. Block reduction formula
(12 marks)

b) State the following as used in control systems:-
i. Superposition. (2 mark)
ii. Node. (2 mark)
iii. Branch.
(2 mark)
iv. Block.
(2 mark)
**** ${ }^{\text {nd }}$ ***

