

EAST AFRICAN SCHOOL OF AVIATION EXAMINATION

DIPLOMA IN AURONAUTICAL ENGINEERING AVIONICS

ELECTROMAGNETIC FIELD THEORY

STREAM: Y3 (Avionics)

DATE: 07/04/2017/

Duration: 3 Hrs

TIME: 9:00 – 12:00 PM

INSTRUCTION TO CANDIDATES

- 1. This paper consists of
- 2. You should have the following for this examination: Answer booklet;
 - Mathematical tables/ Electronic calculator.
- 3. Answer **ANY FIVE** in this paper

<u>Take</u>

Absolute permeability $\mu = 4\pi \times 10^{-7} H/m$ Relative permeability $\mu = 1 H/m$ Absolute permittivity $\varepsilon_0 = 8.854 \times 10^{-12} F/m$ Relative permittivity $\varepsilon_0 = 1 F/m$

1. (a) (b)	Defi (i) (ii)	ne electromagnetic radiation. Name six electromagnetic energy. State the sources detectors and uses (applications) of any four (4) of the a named electromagnetic waves.	(2 marks) (6 marks) above (12 marks)
2. (a)	(i) (ii)	ne the following terms used in electrostatics their measurement units. Electrical field Electrical potential	
(b)	(iii) Static dielectric constants. Find the source on charge Q_1 , 20µC due to charge Q_2 , -300µC where Q_1 is at (and Q_2 is at (2, 0, 0).		(9 marks) 1, 2) (11 marks)
3. (a)	(i) (ii)	state coulomb's law. Define work in reference to electromagnetics.	(2 marks) (2 marks)
(b)		culate the electrostatic force of repulsion between two α - particles when at ance of 10 ⁻¹³ m from each other. Charge of α -particle is 3.2 x 10 ⁻¹² C.	a (7 marks)
(c)	Find orig	l E at (0, 3, 4) m in Cartesian coordinates due to point charge Q = 0.5μC at t in.	he (9 marks)
4. (a) (b)	state Gauss' law. Find the work done in moving a point charge Q = -20μC		(2 marks)
	(i)	From the origin to (4, 0, 0),	
	(ii)	From (4, 0, 0) to (4, 2, 0).	(10 marks)
(c)	Find E at (0, 0, 5) m due to Q_1 = 0.35µC at (4, 0, 0) m and Q_2 = -0.55µC at (300). a sketch figure.		Give (8 marks)
5. (a)	stat (i)	e the units for the following magneto static parameters. Magnetic field strength,	
	(ii)	Magnetic potential,	
	(ii)	Magnetic force,	
	(iv) (v)	Susceptibility, Flux density.	(5 marks)
(b)	(i)	State Biot - Savart law.	(2 marks)

(8 marks)

- (ii) Calculate the magnetizing force and flux density at a distance of 5 cm from a long straight circular conductor carrying a current of 250 A and placed in air. (diameter = 2mm) (6 marks)
- (iii) A wire 2.5 m long is bent (i) into a square (ii) into a circular. If the current flowing through the wire is 100 A, find the magnetizing force at the square and the center of the circle.
 (7 marks)
- 6. (a) (i) State Ampere's law
 - (ii) Define each of the following with respect to electrostatics.
 - (I) Field intensity
 - (II) Electric flux.
 - (b) An isolated dielectric sphere of radius R in free space has a relative permittivity of Er. There is a point charge Q at the center of the sphere. Obtain expression for electric field inside the sphere.
 (4 marks)
 - (c) A thin cylindrical conductor of radius a, infinity in length carries a current I. Find H at all points using Ampere's law.
 (8 marks)