

EAST AFRICAN SCHOOL OF AVIATION EXAMINATION

END TERM I EXAMS

DIPLOMA IN AURONAUTICAL ENGINEERING AVIONICS

COMMUNICATION AND NAVIGATION SYSTEMS

STREAM: Y3 Avionics

Duration:

DAY/DATE:	TIME:

INSTRUCTION TO CANDIDATES

You should have the following for this examination:

Answer booklet;

Mathematical tables/ Electronic calculator.

Answer ALL QUESTIONS in this paper

All questions carry equal marks.

Maximum marks for each part of a question are as shown

Take 1) Impedance of free space $f = 377\Omega$

2) Free space wave velocity, $C=3x10^8$ m/s

This paper consists of Four (4) printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

- 1 (a) Define each of the following as applied to radar systems
 - i) Clutter
 - ii) Angle resolution (2 Marks)
 - (b) Explain the following with respect to radar systems
 - i) Blind speed
 - ii) Doppler effect.
 - iii) With the aid of a labelled diagram, describe the operation of the A-scope diplay. (14 marks)
 - (c) A low –noise radar system operates at 8 GHz with an r.f amplifier whose noise figure is 6dB and bandwidth 400KHz. The antenna diameter is 4 m and it radiates 5w towards a target whose cross-sectional area is 12m². Determine the radar range of the system. (4 marks)
- 2. (a) Define the following with respect to radar system.
 - i) Maximum unambiguous range
 - ii) Range resolution (6 marks)
 - (b) A radar system operates at 6 GHz with pulse repetition frequency of 600 pulses per second. Determine the lowest blind speed in Km/hr. (4 marks)
 - With a circuit diagram, explain the operation of "Hard Tube-Modulator in a radar transmitter.
 - ii) A radar system operates at 2 GHz using an antenna of capture area of 3m²
 with the target cross-sections are being 18m². If it radiates 40Kw,determine
 the minimum receivable power over 80km range (10 marks)
- 3. (a) Name the two components of DME system. (2 marks)
 - (b) i) Explain the main purpose of DME system in aircraft navigation

	c)	Communication and Navigat ii) Draw a well lebelled block diagram of total DME system With respect to VOR system explain five main errors	ion Systems (8 marks) (10 marks)
4.	a)	State THREE (3) advantages of waveguide over coaxial cable	(6 marks)
	b)	Distinguish between "Transverse Electric" and Transverse Magnetic Modes as	
		applied to waveguides.	(4 marks)
	c)	A rectangular waveguide of dimensions 3.0cm has a signal of 7.5 GHz pr	opaged
		through it. For the TE ¹ ,o, determine the :-	
		i) Cut-off wavelength	
		ii) Guide wavelength	
		iii) Group velocity	
		iv) Wave guide impenance	(10 marks)
5.	a)	State the operating frequencies of the following ILS componentsi) Localizerii) Glide slope	
		iii) Marker Beacons	(8 marks)
	b)	List any two causes of signal attenuation in waveguide	(4 marks)
	c)	A parallel –plane waveguide, operating at 8GHz, has a plane separation o	f 4cm when
		carrying the dominant mode. Determine the:	
		i) Cut-off wavelength	
		ii) Group velocity	
		iii) Phase velocity	(8 marks)

****End****