

# EAST AFRICAN SCHOOL OF AVIATION EXAMINATION END TERM I EXAMS 

## DIPLOMA IN AURONAUTICAL ENGINEERING AVIONICS COMMUNICATION AND NAVIGATION SYSTEMS

STREAM: Y3 Avionics
DAY/DATE:

Duration:
TIME:

## INSTRUCTION TO CANDIDATES

You should have the following for this examination:
Answer booklet;
Mathematical tables/ Electronic calculator.
Answer ALL QUESTIONS in this paper
All questions carry equal marks.
Maximum marks for each part of a question are as shown
Take 1) Impedance of free space $£=377 \Omega$
2) Free space wave velocity, $C=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$

This paper consists of Four (4) printed pages.
Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
(a) Define each of the following as applied to radar systems
i) Clutter
ii) Angle resolution
(2 Marks)
(b) Explain the following with respect to radar systems
i) Blind speed
ii) Doppler effect.
iii) With the aid of a labelled diagram, describe the operation of the Ascope diplay.
(c) A low -noise radar system operates at 8 GHz with an r.f amplifier whose noise figure is 6 dB and bandwidth 400 KHz . The antenna diameter is 4 m and it radiates 5 w towards a target whose cross-sectional area is $12 \mathrm{~m}^{2}$. Determine the radar range of the system.
2. (a) Define the following with respect to radar system.
i) Maximum unambiguous range
ii) Range resolution
(6 marks)
(b) A radar system operates at 6 GHz with pulse repetition frequency of 600 pulses per second. Determine the lowest blind speed in $\mathrm{Km} / \mathrm{hr}$.
(4 marks)
(i) With a circuit diagram, explain the operation of "Hard Tube-Modulator in a radar transmitter.
ii) A radar system operates at 2 GHz using an antenna of capture area of $3 \mathrm{~m}^{2}$ with the target cross-sections are being $18 \mathrm{~m}^{2}$. If it radiates 40 Kw , determine the minimum receivable power over 80 km range
3. (a) Name the two components of DME system.
(2 marks)
(b) i) Explain the main purpose of DME system in aircraft navigation
c) With respect to VOR system explain five main errors
4. a) State THREE (3) advantages of waveguide over coaxial cable
b) Distinguish between " Transverse Electric" and Transverse Magnetic Modes as applied to waveguides.
c) A rectangular waveguide of dimensions 3.0 cm has a signal of 7.5 GHz propaged through it. For the $\mathrm{TE}^{1}, \mathrm{o}$, determine the :-
i) Cut-off wavelength
ii) Guide wavelength
iii) Group velocity
iv) Wave guide impenance
(10 marks)
5. a) State the operating frequencies of the following ILS components
i) Localizer
ii) Glide slope
iii) Marker Beacons
b) List any two causes of signal attenuation in waveguide
c) A parallel -plane waveguide, operating at 8 GHz , has a plane separation of 4 cm when carrying the dominant mode. Determine the:
i) Cut-off wavelength
ii) Group velocity
iii) Phase velocity ( 8 marks)

