

EAST AFRICAN SCHOOL OF AVIATION EXAMINATION
 END TERM II EXAMS

 DIPLOMA IN AURONAUTICAL ENGINEERING AVIONICS

 DIPLOMA IN AURONAUTICAL ENGINEERING AVIONICS}

Engineering Mathematics

STREAM: Year (Airframes \& Engines)	Duration: 3HRS
DAY/DATE: 05/04/2017	TIME: 9.00 - 12.00PM

INSTRUCTION TO CANDIDATES

You should have the following for this examination:
Answer booklet;
Mathematical tables / Electronic calculator.
Answer ALL THE QUESTIONS in this paper
All questions carry equal marks.
Maximum marks for each part of a question are as shown

Smith chart

This paper consists of - printed pages.
Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

Answer any FIVE questions

1. (a) Find the general solution of the differential equation

$$
\begin{equation*}
(4 y+3 x) \frac{d y}{d x}=3 x-y \tag{9marks}
\end{equation*}
$$

(b) The displacement x metres of a body fixed from a point 0 at any time t seconds satisfies the differential equation

$$
\frac{d^{2} x}{d t^{2}}-2 \frac{d x}{d t}+10 x=\sin 3 t
$$

Use the method of undetermined coefficients to find an expression for the displacement $x(t)$
(11 marks)
2. (a) show that the solution to the differential equation
$\left(3 y^{2}+4 x y\right) d x+\left(2 x y+x^{2}\right) d y=0$ takes the form $x^{3} y(x+y)=k$, where k is a constant

(9 marks)

(b) Use the method of undetermined coefficients to obtain the general solution of the differential equation:
$\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+2 y=6 x^{2}+4$
(11 marks)
3) a) Table 1 satisfies a function $f(x)$.

x	-2	0	2	4	6	8	10
$f(x)$	6	8	10	60	206	496	978

Use the Newton-Gregory forward difference interpolation formula to determine the value of:
I. $\mathrm{f}(-1.8)$
II. $\mathrm{f}(8.2)$
(12 marks)
b) Given that x_{n} is an approximation to the root of the equation $x^{2}+5 x-20=0$,
I. show, using the Newton-Raphson method, that a better approximation is given by

$$
X_{n+1}=\frac{3 X_{n}^{4}+20}{4 x_{n}^{3}+5}
$$

II. Taking the first approximation $x_{0}=1.9$, find, to 5 decimal places, the root of the equation.
(8 marks)
4. (a) Taking -1.2 as the first approximation to the negative root of the equation $14 x^{3}-11 x^{2}+22=0$, use Newton-Raphson method to evaluate the root correct to four decimal places
(8 marks)
(b) Table below shows data obtained in an experiment. Use Gregory- Newton interpolation formulae to evaluate
(12 marks)
I.
II.
$\mathrm{f}(\mathrm{x})$

t	-0.5	-0.3	-0.1	0.1	0.3	0.5	0.7
$\mathrm{f}(\mathrm{t})$	2.125	0.813	-0.189	-0.131	-0.147	0.525	2.653

5. Sketch the graph of the function

$$
\begin{gathered}
\mathrm{F}_{(\mathrm{t})}=\mathrm{t}^{2}-4 \mathrm{t}+3 \quad 0<\mathrm{t}<4 \\
\mathrm{~F}_{(\mathrm{t}+4)}
\end{gathered}
$$

In the interval $-4<\mathrm{t}<8$ and hence.
Find its Fourier series representation
Use the above results to show that
$\frac{\pi^{2}}{6} \sum_{n=1}^{\infty} \frac{1}{n^{2}}$
6) a) if $\phi=x^{2} y+x z^{2}$ determine $\operatorname{grad} \phi$ at the point $\mathrm{P}(1,3,2)$
b) if $\mathbf{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 6 & 7 \\ 5 & 8 & 9\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{ccc}-2 & 6 & -4 \\ -1 & -6 & 5 \\ 2 & 2 & -2\end{array}\right]$

Verify that $\mathrm{AB}=\mathrm{kI}$ where I is a unit matrix and k is a constant. Hence solve the equations.

$$
\begin{gathered}
x_{1}+2 x_{2}+3 x_{3}=2 \\
4 x_{1}+6 x_{2}+7 x_{3}=2 \\
5 x_{1}+8 x_{2}+9 x_{3}=3
\end{gathered}
$$

c) Three coplanar vectors are
$X=2 i-j+3 k$
$Y=a i+2 j+k$
$Z=i-3 j+4 k$
Determine the value of a.
(6 marks)
****End ${ }^{* * * *}$

