EAST AFRICAN SCHOOL OF AVIATION

FLIGHT PLANNING

FINAL EXAMINATION
FLD EWAC
PART1(40MKS)

1. A jet aircraft has a taxi fuel of 260 kgs , alternate fuel of $4,600 \mathrm{kgs}$, contingency is 5% of trip fuel, cruise fuel flow of $6,000 \mathrm{~kg} / \mathrm{hr}$ and a hold fuel flow of $1,200 \mathrm{kgs} / \mathrm{hr}$, flight time is 2 hr 45 minutes, what is the required ramp fuel?.
(5mks)
2. A piston aircraft has a taxi fuel of 85 lbs and a cruise flow of $3,500 \mathrm{lbs} / \mathrm{hr}$, hold fuel flow of $1,800 \mathrm{lbs} / \mathrm{hr}$, flight time 3 hr 40 minutes, alternate 2040lbs,assuming minimum fuel uplift, normal en-route diversions available and contingency fuel not used en-route, what will be your fuel on arrival at the destination after a 25 minutes hold?
3. The total distance from A-B is 4500 nm the aircraft true airspeed is 400kts, the wind component from departure to destination is 50 kts Tailwind and wind component back to departure is 35 kt tailwind, if the actual time of departure is 0445Z, calculate the distance to PET(point of equal time)and the estimated time of arrival at point of equal time(PET)
(5MKS)
4. An aircraft at $15,500 \mathrm{ft}$ is cleared to level at $1,000 \mathrm{ft}, 25 \mathrm{~nm}$ before reaching a beacon, if the true air speed during the descent is 350 kts and a wind component of 50 kts head wind and the rate of descent is 450 fpm , how many miles before the beacon should descent begin? (5mks)
5. Aircraft mass at Airport A is $66,100 \mathrm{kgs}$

Aircraft mass at Airport B is $57,600 \mathrm{kgs}$
Cruise at L.R.C@FL330

OAT:-26 ${ }^{\circ} \mathrm{C}$
Wind component: 50kt tailwind
Calculate the TAS, Ground distance and specific fuel consumption ($6 \mathbf{m k s}$)
(Fig4.5.3.1)
6. An Aircraft is to fly from A-B a distance of 3,200 ngm using long range cruise(LRC) at FL330
Aircraft mass at "A" 55,200kg
OAT:- $36^{\circ} \mathrm{C}$
W/C: 25kt tailwind
What is the true airspeed and the fuel required? (5mks)
(Fig 4.5.3.1)
7. What is the shortest and longest distance between Rome (4155N01110E) and Honolulu (2117N 16850W)?
(4MKS)
8. Given a break release weight $: 57,000 \mathrm{~kg}$

Airport elevation: 3,000ft
Cleared cruise pressure altitude: 29,000ft
Wind: 30kts tailwind
ISA +5
Determine the following:
a. Sector time
b. Fuel burned in climb
c. Nautical ground miles
d. Average true air speed(TAS)
e. Air distance flown

Fig (4.5.1

PART 2(30MKS)

1. With respect to aircraft loading in the flight planning phase which of the following statement is always correct?

LM=landing mass
TOM=take off mass
MTOM=maximum take off mass
ZFM=zero fuel mass
MZFM=maximum zero fuel mass
DOM=dry operating mass
a. MTOM= ZFM+ Maximum full tank fuel load
b. Reserve fuel=TOM-trip fuel
c. MZFM=traffic load +DOM
d. $L M=T O M$-trip fuel
2. A revenue flight is to be made by a jet transport , the following are structural limits

Maximum ramp mass: 69,9000kgs
Maximum take off mass: 69,300kgs
Maximum landing mass; 58,900kgs
Maximum zero fuel mass: $52,740 \mathrm{kgs}$
The performance limited take off mass is $67,450 \mathrm{kgs}$ and the performance limited landing mass is
55,470kgs,
Dry operating mass: 34,900kgs
Trip fuel: 6,200kgs
Taxi fuel: 250kgs
Contingency and final reserve fuel: $1,300 \mathrm{kgs}$
Alternate fuel: $1,100 \mathrm{kgs}$
The maximum traffic load that can be carried is:
a. $13,950 \mathrm{kgs}$
b. $18,170 \mathrm{kgs}$
c. $17,840 \mathrm{kgs}$
d. $24,800 \mathrm{kgs}$
3. What is the equation for the climb gradient expressed as percentage during un accelerated flight(applicable to small angles only)
a. Climb gradient=(thrust-mass/lift) $\times 100$
b. Climb gradient=(thrust -drag/mass) $\times 100$
c. Climb gradient=(thrust-drag/lift) $\times 100$
d. Climb gradient=(thrust-drag/weight) $\times 100$
4. The optimum altitude is:
a. The pressure altitude at which the speed for high buffet as TAS is a maximum
b. Pressure altitude up to which a cabin altitude of $8,000 \mathrm{ft}$ can be maintained
c. The pressure altitude at which the best specific range can be achieved
d. Pressure altitude at which fuel flow is a maximum
5. How many feet you have to climb to reach FL75?given :fl75.departure aerodrome elevation 1500 ft ;QNH=1023hpa,temperature=ISA,1hpa=30ft
a. 6600ft
b. 6300ft
c. 7800 ft
d. 6000ft
6. When an ATC flight plan is submitted for a flight outside a designated ATS route points included in item 15(route) should not normally be at intervals of more than:
a. 20 minutes flying time or 150 km
b. 30 minutes flying time or 370 km
c. 15 minutes flying time or 150 km
d. 1 hr flying time or 500 km
7. A jet aeroplane has a cruising fuel consumption of $4060 \mathrm{~kg} / \mathrm{hr}$ and $3690 \mathrm{~kg} / \mathrm{hr}$ during holding, if the destination is an isolated airfield, the aeroplane must carry, in addition to contingency reserves, additional fuel load of:
a. 1845 kg
b. 8120 kgs
c. 7380 kg
d. 3500 kg
8. Given the following:

Distance from departure to destination: 435 nm
GS out: 110kts
GS home: 130kts
What is the distance of PET from the departure point?
a. 368 nm
b. 199 nm
c. 236 nm
d. 218 nm
9. Given :

Distance from departure to destination: 500nm
Endurance: 4hrs
TAS: 140Kts
Wind component out: 10 kts tailwind

Wind component on return: 20 kts headwind
What is the distance and time of PSR from departure point?
a. $279 \mathrm{~nm}, 111 \mathrm{~min}$
b. $221 \mathrm{~nm}, 89 \mathrm{~min}$
c. $139 \mathrm{~nm}, 60 \mathrm{~min}$
d. $232 \mathrm{~nm}, 107 \mathrm{~min}$
10. Given :

Dry operating mass: 5,320
Zero fuel mass: 6,790kgs
Trip fuel: 770kgs
Take off fuel: $1,310 \mathrm{kgs}$
The traffic load is:
a. 1610kgs
b. 2940 kgs
c. 3080 kgs
d. 1470kgs
11. During an IFR flight in a beach bonanza the fuel indicators shows that the remaining amount of fuel is 100 lbs after 38 min , the total amount of fuel at departure was 160 lbs for the alternate fuel 30 lbs is necessary. The planned fuel for taxi is 13 lbs ; final reserve fuel is estimated at 50 lbs, if the fuel flow remains the same, how many minutes can be flown to the destination?
a. 63 minutes
b. 4 minutes
c. $\quad 12$ minutes
d. 44 minutes
12. In the ATS flight plan item 15, it is necessary to enter any point at which a change of cruising speed take place, for this purpose a change of speed is defined as;
a. 30 kts or 0.05 mach or more
b. 370 km apart or 0.05 mach or more
c. 5% TAS or 0.01 mach or more
d. 10% TAS or 0.01 mach or more
13. An aircraft plans to depart Dubai at 1100 UTC and arrive at Cairo (HECA) at 1215 UTC in the ATS flight plan item 16(destination EET) should be entered with;
a. HECA 1315
b. HECA 1215
c. HECA 1415
d. HECA 0115
14. A sector distance is 540 NM Long, the TAS is 500 kts ; the wind component is 45 kts headwind, what is the still air distance?
a. 593 NAM
b. 545 NAM
c. 495 NAM
d. 540 NAM
15. The quantity of fuel which is calculated to be necessary for a jet aeroplane to fly IFR from departure aerodrome to destination aerodrome is 5352 kgs , Fuel consumption in holding mode is $6000 \mathrm{~kg} / \mathrm{hr}$, alternate fuel is 4380 kgs and contingency should be 5% of trip fuel. What is the minimum required quantity of fuel which should be on board at take off?
a. $13,370 \mathrm{kgs}$
b. $14,500 \mathrm{kgs}$
c. $13,220 \mathrm{kgs}$
d. $13,000 \mathrm{kgs}$
16. What will be the influence on performance if aerodrome pressure altitude is increased?
a. It will increase the take off distance available
b. It will increase the take off distance
c. it will decrease the take off distance
d. It will increase friction
17. In order to get alternate fuel and time the twin jet aeroplane operations manual graph shall be entered with:
a. Still air distance, wind component, zero fuel mass
b. Flight time, wind component, landing mass at alternate
c. Distance (Nm), wind component, zero fuel mass
d. Distance (Nm), wind component, landing mass at alternate
18. During an IFR flight TAS and time appears to deviate from the data in the flight plan. the minimum deviation that should be reported to ATC in order to conform to PANS-RAC are:
a. TAS 5 kts and time 5 minutes
b. TAS 3% and time 3 minutes
c. TAS 5% and time 3 minutes
d. TAS 10 kts and time 2 minutes
19. In an ATS flight plan item 15(route) in terms of latitude and longitude, a significant point at $44^{\circ} 12^{\prime}$ North and $8^{\circ} 19^{\prime}$ west should be entered as:
a. $44^{\circ} 12^{\prime} \mathrm{N} 08^{\circ} 19^{\prime} \mathrm{W}$
b. N4412 W0819
c. 4412 N 00819 W
d. 04412 N 819 W
20. In an ATC flight plan, an aircraft indicate as "L" LIGHT.
a. Has a certified landing mass greater than $136,000 \mathrm{kgs}$
b. Requires a short runway length
c. Is the lowest wake turbulence category
d. Has a maximum certified take off mass of 7000 kgs
21. Jet aircraft, taxi fuel is 100 kg .trip fuel is $5,325 \mathrm{~kg}$. Hold fuel is $6000 \mathrm{~kg} / \mathrm{hr}$, alternate fuel is $4,380 \mathrm{~kg}$, and contingency is 5% of trip fuel, what is the minimum required take of fuel?
a. $13,220 \mathrm{~kg}$
b. $14,500 \mathrm{~kg}$
c. $12,975 \mathrm{~kg}$
d. $13,370 \mathrm{~kg}$
22. After flying for 16 minutes at100kts TAS witha20kt tailwind, you have to return to the airfield of departure, you will arrive after?
a. 10 min 40 sec
b. 20 min
c. 24 min
d. 16 min
23. Turbo-jet aircraft, flying to isolated airfield, with no destination alternate. on top of taxi, trip and contingency fuel what fuel is required?
a. Greater of 45 min+15\%of trip or 2 hrs
b. 30 min holding @ 450 m above mean sea level
c. 30 min holding@450 m AAL
d. 2 hours at normal cruise consumption
24. The quantity of fuel which is calculated to be necessary for jet aircraft to fly I.F.R from departure to destination aerodrome is $5,325 \mathrm{kgs}$, fuel consumption in holding is $6000 \mathrm{kgs} / \mathrm{hr}$, alternate fuel is 4380 kgs , contingency should be 5% of trip fuel, what is minimum required quantity of fuel which should be on board at take off?
a. $13,220 \mathrm{kgs}$
b. $14,500 \mathrm{kgs}$
c. 13000 kgs
d. $13,370 \mathrm{kgs}$
25. The still air distance in climb is 189 nautical air mile and time 30 minutes, what ground distance would be covered in 30 kts head wind?
a. 189 nm
b. 203 nm
c. 174 nm
d. 193 nm
26. Turbo jet aircraft, taxi fuel 600 kgs , fuel flow in cruise $10000 \mathrm{ks} / \mathrm{hr}$

Fuel flow hold $800 \mathrm{~kg} / \mathrm{hr}$, alternate fuel $10,200 \mathrm{~kg}$, flight time 6 hours,visibility at destination 2000 m , what is the minimum ramp fuel
a. $80,500 \mathrm{kgs}$
b. $79,200 \mathrm{kgs}$
c. $77,800 \mathrm{kgs}$
d. $76,100 \mathrm{kgs}$
27. Given:

Dry operating mass:46,500kgs,Traffic load:8400kgs,Trip fuel:2600kgs,Final reserve :1200kgs.Alternate fuel: 1345 kgs ,Contingency: 5% of trip fuel Which of the following is correct?
a. Est landing mass at destination $56,100 \mathrm{kgs}$
b. Est landing mass at destination $55,030 \mathrm{kgs}$
c. Est take off mass $60,175 \mathrm{kgs}$
d. Est take off mass $60,045 \mathrm{kgs}$
28. You are flying at FL $330, \mathrm{MO} 0.84, \mathrm{OAT}-48^{\circ} \mathrm{C}$, Headwind 52 kts , The time is 1338 UTC, the ATC clears you to be at $30^{\circ} \mathrm{W}(570 \mathrm{~nm}$ away) at 1500 UTC, To what Mmo do you have to adhere ?
a. 0.72
b. 0.76
c. 0.80
d. 0.84
29. An aircraft at 7500 ft is cleared to descend to be level at $1000 \mathrm{ft} ; 6 \mathrm{~nm}$ before reaching a beacon, if ground speed is 156 kts and the rate of descent is 800 fpm , how many miles before the beacon should descent begin?
a. $\quad 27.1 \mathrm{~nm}$
b. 15 nm
c. 30.4 nm
d. 20.5 nm
30. Given:
$\begin{array}{ll}\text { Distance A-B } & \text { 2050NM } \\ \text { Mean ground speed on } & \text { 440kts } \\ \text { Mean ground speed back } & 540 \mathrm{kts} \\ \text { What is the distance to the point of equal time between A and B? }\end{array}$
a. 920 nm
b. 1153 nm
c. 1130 nm
d. 1025 nm

