

EAST AFRICAN SCHOOL OF AVIATION EXAMINATIONS

FINAL EXAM

SAFETY SECTION

SUBJECT: FLIGHT PLANNING

Stream: Flight Dispatch 25
Duration: 2Hrs
DATE: 15/05/17
TIME: 8.30-10.30AM

Instructions to Candidate:

1. This paper consists of NINE (9) pages
2. Answer ALL questions in section A
3. Examination rules and regulations should be adhered to.
4. Maximum marks are indicated on each question

STUDENT'S NAME:
STUDENT'S NUMBER:
--

PART A

1. A jet aircraft has a taxi fuel of 360 kgs , alternate fuel of $3,600 \mathrm{kgs}$, contingency is 5% of trip fuel, cruise fuel flow of $5,000 \mathrm{~kg} / \mathrm{hr}$ and a hold fuel flow of $2,200 \mathrm{kgs} / \mathrm{hr}$, flight time is 2 hr 45 minutes, what is the required ramp fuel?.
2. A piston aircraft has a taxi fuel of 65 lbs and a cruise flow of $2,400 \mathrm{lbs} / \mathrm{hr}$, hold fuel flow of $1,600 \mathrm{lbs} / \mathrm{hr}$, flight time 4 hr 30 minutes, alternate 1085 lbs , assuming minimum fuel uplift, normal en-route diversions available and contingency fuel not used en-route, what will be your fuel on arrival at the destination after a 15 minutes hold? (5mks)
3. The total distance from $A-B$ is $3,000 \mathrm{~nm}$ the aircraft true airspeed is 350 kts , the wind component from departure to destination is 30 kts Tailwind and wind component back to departure is 20kt tailwind, if the actual time of departure is $1245 Z$, calculate the distance to PET(point of equal time)and the estimated time of arrival at point of equal time(PET)
4. An aircraft at $25,000 \mathrm{ft}$ is cleared to level at $2,000 \mathrm{ft}, 14 \mathrm{~nm}$ before reaching a beacon, if the true air speed during the descent is 400 kts and a wind component of 50 kts head wind and the rate of descent is 650 fpm , how many miles before the beacon should descent begin?
5. Aircraft mass at Airport A is $64,500 \mathrm{kgs}$

Aircraft mass at Airport B is $57,600 \mathrm{kgs}$
Cruise at L.R.C@FL330
OAT:- $26^{\circ} \mathrm{C}$
Wind component: 25kt head wind
Calculate the TAS, Ground distance and specific fuel consumption
(6mks)
(Fig4.5.3.1)
6. An Aircraft is to fly from A-B a distance of 2,800 ngm using long range cruise(LRC) at FL330
Aircraft mass at " A " $55,200 \mathrm{~kg}$
OAT: $-36^{\circ} \mathrm{C}$
W/C: 25kt tailwind
What is the true airspeed and the fuel required?
(5mks)
(Fig 4.5.3.1)
7. What is the shortest and longest distance between Rome (2530NO1110E) and Honolulu (1115N 16850W)?
(4mks)
8. Given a break release weight $: 57,000 \mathrm{~kg}$

Airport elevation: 3,000ft

Cleared cruise pressure altitude: 29,000ft
Wind: 30kts tailwind
ISA +5
Determine the following:
a. Sector time
b. Fuel burned in climb
c. Nautical ground miles
d. Average true air speed(TAS)
e. Air distance flown
(5mks)
Fig (4.5.1

PART B

1. A revenue flight is to be made by a jet transport, the following are structural limits

Maximum ramp mass: 69,9000kgs
Maximum take off mass: $69,300 \mathrm{kgs}$
Maximum landing mass; $58,900 \mathrm{kgs}$
Maximum zero fuel mass: $52,740 \mathrm{kgs}$
The performance limited take off mass is $67,450 \mathrm{kgs}$ and the performance limited landing mass is $55,470 \mathrm{kgs}$,
Dry operating mass: $34,900 \mathrm{kgs}$
Trip fuel: $6,200 \mathrm{kgs}$
Taxi fuel: 250kgs
Contingency and final reserve fuel: 1,300kgs
Alternate fuel: $1,100 \mathrm{kgs}$
The maximum traffic load that can be carried is:
a. $13,950 \mathrm{kgs}$
b. $18,170 \mathrm{kgs}$
c. $17,840 \mathrm{kgs}$
c. $24,800 \mathrm{kgs}$
2. What is the equation for the climb gradient expressed as percentage during un accelerated flight(applicable to small angles only)
a. Climb gradient=(thrust-mass/lift) $\times 100$
b. Climb gradient=(thrust $-\mathrm{drag} / \mathrm{mass}) \times 100$
c. Climb gradient=(thrust-drag/lift) $\times 100$
d. Climb gradient=(thrust-drag/weight) $\times 100$
3. The optimum altitude is:
a. The pressure altitude at which the speed for high buffet as TAS is a maximum
b. Pressure altitude up to which a cabin altitude of $8,000 \mathrm{ft}$ can be maintained
c. The pressure altitude at which the best specific range can be achieved
d. Pressure altitude at which fuel flow is a maximum
4. When an ATC flight plan is submitted for a flight outside a designated ATS route points included in item 15(route) should not normally be at intervals of more than:
a. 20 minutes flying time or 150 km
b. 30 minutes flying time or 370 km
c. 15 minutes flying time or 150 km
d. 1 hr flying time or 500 km
5. A jet aeroplane has a cruising fuel consumption of $4060 \mathrm{~kg} / \mathrm{hr}$ and $3690 \mathrm{~kg} / \mathrm{hr}$ during holding, if the destination is an isolated airfield, the aeroplane must carry, in addition to contingency reserves, additional fuel load of:
a. 1845 kg
b. 8120 kgs
c. 7380 kg
d. 3500 kg
6. Given the following:

Distance from departure to destination: 435 nm
GS out: 110kts
GS home: 130kts
What is the distance of PET from the departure point?
a. 368 nm
b. 199 nm
c. 236 nm
c. 218 nm
7. Given :

Distance from departure to destination: 500nm
Endurance: 4hrs
TAS: 140Kts
Wind component out: 10 kts tailwind
Wind component on return: 20 kts headwind
What is the distance and time of PSR from departure point?
a. $279 \mathrm{~nm}, 111 \mathrm{~min}$
b. $221 \mathrm{~nm}, 89 \mathrm{~min}$
c. $139 \mathrm{~nm}, 60 \mathrm{~min}$
d. $232 \mathrm{~nm}, 107 \mathrm{~min}$
8. Given:

Dry operating mass: 5,320
Zero fuel mass: 6,790kgs
Trip fuel: 770kgs
Take off fuel: 1,310kgs
The traffic load is:
a. 1610 kgs
b. 2940 kgs
c. 3080 kgs
d. 1470 kgs
9. During an IFR flight in a beach bonanza the fuel indicators shows that the remaining amount of
fuel is 100 lbs after 38 min , the total amount of fuel at departure was 160 lbs for the alternate fuel 30 lbs is necessary. The planned fuel for taxi is 13 lbs ; final reserve fuel is estimated at 50 lbs , if the fuel flow remains the same, how many minutes can be flown to the destination?
a. 63 minutes
b. 4 minutes
c. 12 minutes
d. 44 minutes
10. In the ATS flight plan item 15, it is necessary to enter any point at which a change of cruising speed take place, for this purpose a change of speed is defined as;
a. 30 kts or 0.05 mach or more
b. 370 km apart or 0.05 mach or more
c. 5% TAS or 0.01 mach or more
d. 10% TAS or 0.01 mach or more
11. A sector distance is 540 NM Long, the TAS is 500 kts ; the wind component is 45 kts headwind, what is the still air distance?
a. 593 NAM
b. 545 NAM
c. 495 NAM
d. 540 NAM
12. What will be the influence on performance if aerodrome pressure altitude is increased?
a. It will increase the take off distance available
b. It will increase the take off distance
c. it will decrease the take off distance
d. It will increase friction
13. In order to get alternate fuel and time the twin jet aeroplane operations manual graph shall be entered with:
a. Still air distance, wind component, zero fuel mass
b. Flight time, wind component, landing mass at alternate
c. Distance (Nm), wind component, zero fuel mass
d. Distance (Nm), wind component, landing mass at alternate
14. During an IFR flight TAS and time appears to deviate from the data in the flight plan. the minimum deviation that should be reported to ATC in order to conform to PANS-RAC are:
a. TAS 5kts and time 5minutes
b. TAS 3% and time 3 minutes
c. TAS 5% and time 3 minutes
d. TAS 10 kts and time 2 minutes
15. In an ATS flight plan item 15(route) in terms of latitude and longitude, a significant point at $44^{\circ} 12^{\prime}$ North and $8^{\circ} 19^{\prime}$ west should be entered as:
a. $44^{\circ} 12^{\prime} \mathrm{N} 08^{\circ} 19^{\prime} \mathrm{W}$
b. N4412 W0819
c. 4412 N 00819 W
d. 04412 N 819 W
16. In an ATC flight plan, an aircraft indicate as "L" LIGHT.
a. Has a certified landing mass greater than $136,000 \mathrm{kgs}$
b. Requires a short runway length
c. Is the lowest wake turbulence category
d. Has a maximum certified take off mass of 7000 kgs
17. Turbo-jet aircraft, flying to isolated airfield, with no destination alternate. on top of taxi, trip and contingency fuel what fuel is required?
a. Greater of $45 \mathrm{~min}+15 \%$ of trip or 2 hrs
b. 30 min holding @ 450 m above mean sea level
c. 30 min holding@450 m AAL
d. 2 hours at normal cruise consumption
18. The quantity of fuel which is calculated to be necessary for jet aircraft to fly I.F.R from departure to destination aerodrome is $5,325 \mathrm{kgs}$, fuel consumption in holding is $6000 \mathrm{kgs} / \mathrm{hr}$, alternate fuel is 4380 kgs , contingency should be 5% of trip fuel, what is minimum required quantity of fuel which should be on board at take off?
a. $13,220 \mathrm{kgs}$
b. $14,500 \mathrm{kgs}$
c. 13000 kgs
d. $13,370 \mathrm{kgs}$
19. Turbo jet aircraft, taxi fuel 600kgs, fuel flow in cruise10000ks/hr Fuel flow hold $800 \mathrm{~kg} / \mathrm{hr}$, alternate fuel $10,200 \mathrm{~kg}$, flight time 6 hours,visibility at destination 2000 m , what is the minimum ramp fuel
a. $80,500 \mathrm{kgs}$
b. $79,200 \mathrm{kgs}$
c. $77,800 \mathrm{kgs}$
d. $76,100 \mathrm{kgs}$
20. Given:

Dry operating mass:46,500kgs,Traffic load:8400kgs,Trip fuel:2600kgs,Final reserve :1200kgs.Alternate fuel: 1345 kgs ,Contingency:5\% of trip fuel Which of the following is correct?
a. Est landing mass at destination $56,100 \mathrm{kgs}$
b. Est landing mass at destination $55,030 \mathrm{kgs}$
c. Est take off mass $60,175 \mathrm{kgs}$
d. Est take off mass 60,045kgs
21. Given:

Distance A-B 2050NM
Mean ground speed on 440kts
Mean ground speed back 540kts
What is the distance to the point of equal time between A and B ?
a. 920 nm
b. 1153 nm
c. 1130 nm
d. 1025 nm
22. Determine the Landing Mass for the following single engine airplane.

Given:
Standard Empty Mass :1764 lbs.
Optional Equipment : 35 lbs .
Pilot + Front seat passenger: $\mathbf{3 0 0} \mathrm{lbs}$.
Cargo Mass: 350 lbs .
Ramp Fuel = Block Fuel: 60 Gal.
Trip Fuel: 35 Gal.
Fuel density: 6 lbs./Gal.
a. 2659 lbs .
b. 2449 lbs .
c. 2589 lbs .
d. 2799 lbs
23. With respect to the optimum altitude, which of the following statements is correct?
a. An aeroplane flies most time above optimum altitude because this yields the most economic results.
b. An aeroplane always flies at the optimum altitude because this is economically seen as the most attractive altitude.
c. An Aircraft always flies below the optimum altitude because Mach buffet might occur.
d. An Aircraft sometimes flies above or below the optimum altitude because optimum altitude increases continuously during flight.
24. You are to determine the maximum fuel load which can be carried in the following conditions:
-Dry operating fuel: 2800kg
-Trip fuel: 300kg
-Traffic load: 400kg
-Maximum take-off mass: 4,200kg
-Maximum landing mass: $3,700 \mathrm{~kg}$
a. 800 kg
b. 500 kg
c. 700 kg
d. 1000 kg
25. In the ATC flight plan item 13, in a flight plan submitted before departure, time entered is the:
a. Estimated take off time
b. Allocated slot time.
c. Estimated time over the first point en-route.
d. Estimated off block time.
26. A revenue flight is to be made by a jet transport. The
following are the aeroplane's structural limits:
-Maximum Ramp Mass: 69900 kg
-Maximum Take Off Mass: 69300 kg
-Maximum Landing Mass: 58900 kg
-Maximum Zero Fuel Mass: 52740 kg
The performance limited take off mass is 67450 kg and the performance limited landing mass is 55470 kg .
Dry Operating Mass: 34900 kg
Trip Fuel: 6200 kg
Taxi Fuel: 250 kg
Contingency \& final reserve fuel: 1300 kg
Alternate Fuel: 1100 kg
The maximum traffic load that can be carried is:
a. 25800 kg
b. 17840 kg
c. 18170 kg
d. 13950 kg
27. Which of the following statements is relevant for forming route positions in intergraded range flight planning?
a. No segment shall be more than 30 minutes of flight time.
b. Each reporting points requires a new segment.
c. Small change of temperature $2^{\circ} \mathrm{C}$ can divide segment.
d. The distance from take-off up to the top of climb has to be known.
28. Given;

Distance from departure to destination: 2500nm
TAS: 500Kts
Wind component out: 40kts Tailwind
Wind component on return: 30 Headwind
What is the time of the PET from departure point?
a. 28 min
b. 129 min
c. 180 min
d. 161 min
29. Given:

Distance from departure to destination: 2450 nm
Endurance 7.5 hrs
TAS: 410
Ground speed out: 360 Kts
Ground speed home: 460kts
What is the time of the point of safe return (PSR) from departure point?
a. 158 min
b. 252 min
c. 190 min
d. 111 min
30. At the flight preparation stage, the following parameters in particular are available for determining the mass of an aircraft:
1- Dry Operating Mass
2-Operating Mass
Which statement is correct?
a. Dry Operating Mass includes fixed equipment needed to carry out a specific flight.
b. Operating Mass is the mass of an aircraft without take off fuel.
c. Operating Mass includes the traffic load.
d. Dry Operating Mass includes take off fuel.

