2207/302

TELECOMMUNICATION PRINCIPLES

Oct/Nov. 2017 Time: 3 hours



## THE KENYA NATIONAL EXAMINATIONS COUNCIL

## DIPLOMA IN AERONAUTICAL ENGINEERING AVIONICS (COMMUNICATION AND NAVIGATION OPTION)

TELECOMMUNICATION PRINCIPLES

3 hours

## INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Mathematical tables/Non-programmable scientific calculator;

Smith chart;

Drawing instruments.

Answer FIVE of the EIGHT questions in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 7 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

- 1. (a) (i) Define the following with respect to silicon controlled rectifiers (SCRs):
  - I. holding current;
  - II. forward breakover voltage.
  - (ii) With the aid of a circuit diagram, describe the operation of a unijunction transistor oscillator used to trigger an SCR.

(8 marks)

- (b) State **two** advantages of thermistors over resistance thermometers when used for temperature measurements.
  - (ii) Figure 1 shows a diagram of a pressure measurement system using a photo detector. Describe its operation.

(6 marks)



Fig. 1

- (c) Figure 2 shows circuit diagram of an astable multivibrator. Determine the:
  - (i) period of output pulse;
  - (ii) pulse repetition frequency;
  - (iii) mark-to-space ratio.

(6 marks)



- 2. (a) (i) State three ways in which interference occur in radio waves.
  - (ii) With the aid of ray diagram, describe the following modes of radio wave propagation:
    - I. ground wave;
    - II. sky wave;
    - III. space wave.

(9 marks)

- (b) Sketch the waveforms for the following pulse amplitude modulated waves, assuming sinusoidal modulating signal:
  - (i) double-polarity PAM;
  - (ii) single-polarity PAM.

(4 marks)

- (c) A wave travelling in free space enters an ionospheric layer having electron density of  $4 \times 10^{11}$  electrons/m<sup>3</sup>. If the angle of incidence is 45°, angle of refraction is 37° and the velocity in free space in  $3 \times 10^8$  m/s, determine the:
  - (i) maximum frequency that can be returned to earth;
  - (ii) optimum working frequency;
  - (iii) velocity of the wave in the ionospheric layer.

(7 marks)

- (a) Figure 3 shows a block diagram of a two-port network. Taking I<sub>1</sub> and V<sub>2</sub> as independent variables:
  - (i) derive the expressions for the h-parameters of the network;
  - (ii) draw the h-parameter equivalent circuit of the network.

(10 marks)



Fig. 3

- (b) A transformer-coupled class A audio power amplifier is supplied from a 10 V supply and drives as 8  $\Omega$  loudspeaker. The coupling transformer has a turns ratio  $N_1:N_2=3:1$ , the quiescent base bias current = 6 mA and the output voltage varies between  $V_{ce\ min}=1.7\ V$  and  $V_{ce\ max}=18.3\ V$ . Determine the:
  - (i) ac resistance on the collector;
  - (ii) rms value of voltage across the primary winding;
  - (iii) rms value of voltage across the load;
  - (iv) ac load power;
  - (v) second harmonic distortion.

(10 marks)

- 4. (a) (i) State **two** effects of each of the following on the performance of a single-tuned amplifier:
  - I. low Q;
  - II. high Q.
  - (ii) With the aid of response curves, describe stagger tuning in tuned amplifiers.
    (10 marks)

(b) Figure 4 shows the circuit diagram of the frequency determining network of a Hartley oscillator. Derive the expression for the oscillating frequency. (4 marks)



Fig. 4

- (c) An LC oscillator tunes over the frequency range 500 Hz to 2,000 Hz. The coil has a self inductance of 150  $\mu$ H. Determine the maximum and minimum values of the tuning capacitor. (6 marks)
- 5. (a) With the aid of a circuit diagram, describe the operation of a diode detector used to demodulate an amplitude modulated (AM) wave. (6 marks)
  - (b) Derive the expression for the total power, pt, contained in an AM wave in terms of the carrier power, Pc, and modulation index, m. (5 marks)
  - (c) The envelope of an AM wave varies between a maximum of 10 V and a minimum of 4 V. Determine the amplitude of the:
    - (i) carrier;
    - (ii) modulating signal;
    - (iii) side frequency components.

(9 marks)

- 6. (a) (i) Define the following with respect to transmission lines:
  - I. standing wave ratio:
  - Ц. wavelength.
  - (ii) Sketch the standing wave pattern for both voltage and current in a lossless transmission line terminated in:
    - I. short circuit;
    - II. open circuit.

(10 marks)

| (b) | A transmission line having a characteristic impedance of 50 $\Omega$ is terminated by a load of (40 - j50) $\Omega$ . Using a Smith chart, determine the: |                                                                                                                                               |            |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------|
|     | (i)                                                                                                                                                       | standing wave ratio;                                                                                                                          |            |
|     | (ii)                                                                                                                                                      | reflection coefficient;                                                                                                                       |            |
|     | (iii)                                                                                                                                                     | input impedance of a $0.18 \lambda$ length of the line.                                                                                       | (10 marks) |
| (a) | (i)                                                                                                                                                       | State two services that use the narrow band frequency modulation (FM).                                                                        |            |
|     | (ii)                                                                                                                                                      | With the aid of a circuit diagram, describe the operation of an FM bal slope detector and sketch its response curve.                          | lanced     |
|     |                                                                                                                                                           |                                                                                                                                               | (12 marks) |
| (b) |                                                                                                                                                           | An FM wave is represented by the expression $v = 10 \sin (7.45 \times 10^8 t + 4 \sin 1180 t)$ volts. Determine the:                          |            |
|     | (i)                                                                                                                                                       | carrier frequency in Hz;                                                                                                                      |            |
|     | (ii)                                                                                                                                                      | modulating signal frequency in Hz;                                                                                                            |            |
|     | (iii)                                                                                                                                                     | frequency deviation;                                                                                                                          |            |
|     | (iv)                                                                                                                                                      | power the wave will dissipate in a 12 $\Omega$ resistor.                                                                                      | (8 marks)  |
| (a) | With t                                                                                                                                                    | Fith the aid of a circuit diagram, describe the operation of a synchro error-detecting stem.  • (6 marks)                                     |            |
| (b) | (i)                                                                                                                                                       | State the reasons for including protective devices on the dc motor sta                                                                        | rters.     |
|     | (ii)                                                                                                                                                      | Sketch, on the same axis, speed characteristic curves for shunt, series compound de motors respectively.                                      | and        |
|     |                                                                                                                                                           |                                                                                                                                               | (5 marks)  |
| (c) | (i)                                                                                                                                                       | Draw labelled block diagrams illustrating the following negative feed amplifier connections:                                                  | lback      |
|     |                                                                                                                                                           | I. voltage series; II. current series.                                                                                                        |            |
|     | (ii)                                                                                                                                                      | An amplifier has a gain of 1000 before feedback is applied. Determine percentage change in gain if 0.01 of the output is fed back as negative |            |

7.

8.

## IMPEDANCE OR ADMITTANCE COORDINATES



THIS IS THE LAST PRINTED PAGE.