Oct./Nov. 2017 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL.

DIPLOMA IN AERONAUTICAL ENGINEERING (AVIONICS OPTION) MODULE III

ELECTROMAGNETIC FIELD THEORY

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Scientific calculator;

Drawing instruments;

Table of electromagnetic field formulae.

Answer FIVE questions of the EIGHT questions in the answer booklet provided.

All questions carry equal marks

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

Vacuum permittivity, $\varepsilon_o = 8.854 \times 10^{-2} \, F/M$ Vacuum permeability, $\mu_0 = 4\pi \times 10^{-7} \, H/M$ Speed of light in Vacuum, $C = 3.0 \times 10^8 \, m/s$ Electronic charge, $e = 1.602 \times 10^{-19} \, C$ Electron mass, $m_e = 9.1 \times 10^{-31} \, kg$ Earths gravitational force, $g = 9.8 \, N/kg$

This paper consists of 6 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

(i) medium frequency (mf) band; (ii) visible light; (iii) microwaves.	(6 marks)
(ii) visible light; (iii) microwaves.	(6 marks)
	(6 marks)
(b) State the industrial applications of each of the following ele	ctromagnetic waves:
(i) visible light;	
(ii) microwaves.	(4 marks)
(c) With the aid of a diagram, explain the operation of each of the detectors:	the following radiation
(i) Geiger Muller (GM) tube;	
(ii) semi conductor detector.	(10 marks)
2. (a) Define the following with respect to electrodynamics:	
(i) electric field intensity;	
(ii) electric flux.	(3 marks)
(b) With the aid of a sketch, explain Gauss's law of electrostati	cs. (5 marks)
(c) A charge $Q_1 2 \mu C$, is located at Cartesian co-ordinates A(2, Determine the:	-4,4) metres.
(i) electric field intensity at the origin (0,0,0) due to Q ₁	;
(ii) force on another charge Q_1 , -1 μ C, located at B(-1,2)	
(d) Obtain an expression for the electric field intensity, \tilde{E} , req	uired to balance the earth's
gravitational force on a charge, q coulombs having a mass	m kilograms. (4 marks)
	(4 marks)
3/ (a) Differentiate between magnetic field strength and magnetic	e flux density. (2 marks)
(b) With the aid of a sketch, explain Biot-Savart law with resp	ect to magnetostatics. (6 marks)
(c) An infinitely long straight wire carries current I, along the co-ordinates. Derive an expression for the magnetic field s	Z-axis in cylindrical strength, H, along a radius r. (6 marks)

(d) Figure 1 shows a diagram of a square coil 0.6 metres on each side. The coil rotates about the X-axis at $\omega = 25 \pi$ rad/s in a magnetic field, $\hat{B} = 0.2 \ \tilde{a}_z$. Teslas. Derive an expression for the induced voltage. (6 marks)

Fig. 1

- 4. (a) List Maxwell's four equations in point form and explain the significance of each equation.
 (8 marks)
 - (b) The electric field intensity, \tilde{E} , of an electromagnetic field free space is given by the expression:

$$\tilde{E} = 15 \cos(\omega t + 3Z) \tilde{a}_y$$

Derive expressions for:

- (i) magnetic flux density, \tilde{B} ;
- (ii) magnetic field intensity, \tilde{H} ;
- (iii) electric flux density, \tilde{D} .

(8 marks)

(c) Explain the relationship between electric fields at the interface of two dielectrics.

(4 marks)

5.	(a)	Defin	e each of the following with respect to electromagnetic waves	
		(i)	TM waves;	
		(ii)	wavelength;	
		(iii)	intrinsic impedance.	(3 marks)
	(b)	A 10 GHz uniform plane wave propagates in a lossless medium for which \mathcal{E}_{τ} μ_{τ} = 2.5. Determine the:		
		(i)	velocity of propagation;	
		(ii)	propagation constant, β ;	
		(iii)	wavelength;	
		(iv)	intrinsic impedance.	(8 marks)
	(c)	(i)	Explain the poynting theorem with respect to electromagnetic power	transfer.
		(ii)	The electric field intensity of a wave is given by $\tilde{E}(z,t) = 60 \sin (\omega t - \beta z) \tilde{a}_z V/M.$	
			Determine the total power passing through a rectangular area of side	
			30 mm x 5 mm in the $z = o$ plane	(9 marks)
5.	(a)	Define each of the following with respect to magnetic quantities:		
		<i>(</i>)	111.	
		(i)	permeability;	(2 montra)
		(ii)	ferromagnetic material	(2 marks)
	(b)	State the equivalent magnetic quantities corresponding to each of the following electric quantities:		
		(i)	conductance;	. 1
		(ii)	current;	
		(iii)	resistance.	(3 marks)
	(c)	With the aid of a circuit diagram, describe the set-up and the procedure for determining the B-H curve of a magnetic material by the reversal method. (8 marks)		
	(d)	Figure 2 shows a diagram of a magnetic material made of mild steel. The central limp is wound with 600 turns and has a cross-sectional area of 6 cm ² . Each of the outer limps has a cross-section of 4 cm ² . The air gap length is 1 mm.		
		(i) (ii)	Draw an equivalent electrical circuit of the magnetic circuit; For a 1.2 mW flux in the central limp, determine the MMF for the air	-gap. (7 marks)

Fig. 2

- 7. (a) Explain skin depth with respect to electromagnetic wave conduction. (3 marks)
 - (b) A parallel plate capacitor has a plate area of 16 cm^2 and is separated by a distance of 4 mm. A voltage $\theta = V_o \sin \omega t$ is applied across the plates of the capacitor. Obtain an expression for the:
 - (i) conduction current;
 - (ii) displacement current density.

(8 marks)

- (c) A cube defied by, $0 \le x \le 1, 0 \le y \le 2$ and $0 \le z \le 3$ metres contains a volume charge of density, $p = 2xyz \ \mu c/m^3$. Determine the total electric flux flowing outward from the cube.
- 8. (a) For the vector field: $\tilde{p} = x^2 y z \tilde{a}_x + x z \tilde{a}_z$, determine its:
 - (i) divergence, ∇. p̃;
 - (ii) Curl $\nabla X \tilde{p}$.

(8 marks)

- (b) Given the vectors, $\tilde{A} = 2\tilde{a}_x + 3\tilde{a}_y + 5\tilde{a}_z$ and $B = 6\tilde{a}_x + \tilde{a}_y 2\tilde{a}_z$ determine:
 - (i) $|\tilde{A} + \tilde{B}|$;
 - (ii) component of \tilde{A} along \tilde{a}_y ;
 - (iii) a unit vector parallel to $3\tilde{A} \tilde{B}$.

(8 marks)

(c) On the same axis sketch the following functions for two waves travelling in free space: $v_1(z,t) = \sin(\omega t)$;

$$v_1(z,t) = \sin(\omega t + a)$$
.

(4 marks)

Table of electromagnetic field formulas

1. Cartesian

Gradient:
$$\nabla \tilde{A} = \frac{\partial A}{\partial x} \tilde{a}x + \frac{\partial A}{\partial y} \tilde{a}y + \frac{\partial A}{\partial z} \tilde{a}z$$

Divergence:
$$\nabla . \tilde{A} = \frac{\partial A}{\partial x} + \frac{\partial A}{\partial y} + \frac{\partial A}{2z}$$

Curl:
$$\nabla \times \tilde{A} = \left(\frac{\partial A_z}{\partial x} - \frac{\partial A_y}{\partial z}\right) \tilde{a}x + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right) \tilde{a}y + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right)$$

2. Spherical

Gradient:
$$\nabla A = \frac{\partial A}{\partial r} a_r + \frac{1}{r} \frac{\partial A}{\partial \theta} \tilde{a}_{\theta} + \frac{1}{r \sin \theta} \frac{\partial A}{\partial \phi} \tilde{a}_{\phi}$$

Divergence:
$$\nabla . \tilde{A} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 A_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta A_\theta) + \frac{1}{r \sin \theta} \frac{\partial A_\phi}{\partial \phi}$$

Curl:
$$\nabla \times \tilde{A} = \frac{1}{r \sin \theta} \left[\left(\frac{\partial}{\partial \theta} (\sin \theta A_{\phi}) - \frac{\partial A_{\theta}}{\partial \phi} \right) \tilde{a}r + \frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial A_{r}}{\partial \phi} - \frac{\partial}{\partial r} (r A_{\phi}) \right) \tilde{a}_{\phi} + \frac{1}{r} \left(\frac{\partial}{\partial r} (r A_{\theta}) - \frac{\partial A_{r}}{\partial \theta} \right) \tilde{a}_{\phi}$$

3. Cylindrical

Gradient:
$$\nabla A = \frac{\partial A}{\partial r} \tilde{a}r + \frac{1}{r} \frac{\partial A}{\partial \phi} \tilde{\phi} + \frac{\partial A}{\partial z} \tilde{a}_z$$

Divergence:
$$\nabla . \tilde{A} = \frac{1}{r} \frac{\partial}{\partial r} (rA_r) + \frac{1}{r} \frac{\partial A\phi}{\partial \phi} + \frac{\partial A_z}{\partial z}$$

$$\begin{aligned} &Curl \colon \nabla \times \tilde{A} = \left(\frac{1}{r} \frac{\partial Az}{\partial \phi} - \frac{\partial A\phi}{\partial z}\right) a\tilde{r} + \left(\frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r}\right) \tilde{a}_{\phi} \\ &+ \frac{1}{r} \left(\frac{\partial}{\partial r} (rA_{\phi}) - \frac{\partial Ar}{\partial \phi}\right) \tilde{a}_z \end{aligned}$$

THIS IS THE LAST PRINTED PAGE.