2207/304 DIGITAL PRINCIPLES AND **MICROPROCESSORS** Oct./Nov. 2017 Time: 3 hours ## THE KENYA NATIONAL EXAMINATIONS COUNCIL #### DIPLOMA IN AERONAUTICAL ENGINEERING AVIONICS (COMMUNICATION AND NAVIGATION OPTION) ## DIGITAL PRINCIPLES AND MICROPROCESSORS 3 hours #### INSTRUCTIONS TO CANDIDATES You should have the following for this examination: Answer booklet; Non-programmable scientific calculator; Instruction set (Intel 8080/8085). Answer any FIVE of the EIGHT questions in the answer booklet provided. All questions carry equal marks. Maximum marks for each part of a question are as indicated. Candidates should answer the questions in English. This paper consists of 9 printed pages. Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing. - (a) Perform each of the following number conversions: - (i) $(6857.625)_{10}$ to octal; - (ii) (4372.4051)₈ to decimal; - (iii) $(26.85)_{10}$ to binary. (6 marks) - (b) Evaluate each of the following in the given bases: - $(7465)_8$ (i) $-(3577)_8$ - (FDE6)₁₆ - (ii) $+(3EFC)_{16}$ - (iii) $(110111)_2 \div (101)_2$. (6 marks) - (c) (i) Convert the decimal number 3789 into: - I. 8-4-2-1 BCD; - II. Excess 3; - III. ASCII; given that the ASCII code for 0 is 30 H. - (ii) Convert the binary number 101100 into gray code. (8 marks) - (a) Complete each of the following Boolean expressions, showing the proof in each case: - (i) A+A+A= - (ii) $\overline{A} + A\overline{B} =$ (6 marks) - (b) Simplify each of the following Boolean expressions: - (i) $(\overline{A} + B)(\overline{A} + C)$ - (ii) $XYZ + X\overline{Y}Z + XY\overline{Z} + X\overline{Y}\overline{Z}$ (6 marks) (c) (i) Define fan-in with respect to logic gates. Figure 1 shows a circuit diagram of a digital gate. (ii) Fig. 1 - I. state the gate's family. - Π. explain the working of the gate. - with the aid of a truth table, derive the logic function implemented by the Ш. gate. (8 marks) - Draw the truth tables for each of the following flip-flops: 3. (a) (i) - I. R-S; - II. T. - Draw a block schematic diagram showing how a T-flip flop could be obtained (ii) from a JK-flip flop. (10 marks) - Using D-flip flops, draw a block schematic diagram of a 4-bit serial-in serial-out (b) (i) (SISO) register. - (ii) Describe the operation of the register in b(i). (6 marks) (c) Figure 2 shows a logic diagram of a sequential circuit. Complete its state transition in Table 1. (4 marks) Fig. 2 Table 1 | Present State | Inputs | Next state | Output | |---------------|--------|------------|--------| | Q | x, y | Q+ | S | | 0 | 0.0 | | | | 1 | 00 | | | | 0 | 0.1 | | | | 1 | 01 | | | | 0 | 10 | | | | 1 | 10 | | | | 0 | 11 | | | | 1 | 11 | | | 4. (a) A combinational logic circuit has four inputs and one output. The output is equal to logic 1 when: All inputs are equal to logic 1 or; None of the inputs are equal to logic 1 or; An odd number of inputs are equal to logic 1. (i) Obtain the truth table for the circuit. - (4 marks) - (ii) Using a K-map, obtain a simplified expression for the sum-of-Products (SOPs). (4 marks) - (iii) Draw a logic circuit diagram for the expression in a(ii) using NAND gates only. (4 marks) - A combinational logic circuit is defined by the Boolean function, $F = \overline{X}YZ + X\overline{Y}Z$. (b) Realize the circuit using: - decoders and external gates only; (i) - half adder logic circuits only. (ii) (8 marks) 5. State two applications of digital counter. (a) (2 marks) Figure 3 shows a state diagram of a 2-bit Gray Code Counter. (b) - Fig. 3 - Draw a state transition table for the counter using JK-flip flops. (i) (4 marks) - Using K-maps, derive minimized logic expressions for the JK inputs. (ii) (4 marks) Draw the logic circuit diagram for the counter. (iii) - (4 marks) - (c) Draw a schematic logic diagram of a 4-bit Johnson counter. (i) - Draw the truth table for the counter in c(i). (ii) (6 marks) - Define each of the following with respect to Anologue-to-Digital Converter (a) (i) (ADC); - I. resolution: - II. . accuracy. (2 marks) (ii) Figure 4 shows a schematic block diagram of an ADC. Describe its operation. Fig. 4 (iii) State two merits of the ADC in a(ii). (7 marks) - (b) A 6-bit successive approximation ADC is used to convert an analogue signal. Determine its: - (i) percentage resolution; - (ii) time to convert a half-scale analogue signal if its clock frequency in 1MHz. (5 marks) - (c) Describe each of the following input/output techniques, stating one merit of each: - (i) polled; - (ii) interrupt. (6 marks) - 7. (a) Define each of the following microprocessor addressing modes, illustrating each with an example: - (i) immediate; - (ii) relative; - (iii) absolute. (6 marks) (b) Write an assembly language program to perform the following sequentially: Subtract the decimal numbers, 96 - 17; Multiply the result by 2; Store the result in memory location 1806 H; End. (5 marks) (c) Table 2 shows an 8085 assembly language program. Table 2 MV1 A, 20 H MV1 B, 3C H ADD B ADD B HLT - (i) With the aid of a trace table, determine the data in the accumulator at the end of the program execution. - (ii) Convert the program into 8085 hexadecimal machine code. (9 marks) - 8. (a) A microcomputer has a 16 K X 8 bit RAM which is made from 4K X 4 RAM chips. - (i) Determine the number of 4K X4 RAM chips needed; - (ii) Draw a block schematic diagram to show the memory implementation. (6 marks) (b) Figure 5 shows a circuit diagram of a temperature controller. The circuit compares the outside and the inside temperatures, then turns on a cooling fan when conditions are right. Explain how the operation of the circuit will be affected by each of the following independent faults: - (i) NAND gate U₂ output is stack at logic O; - (ii) Transistor Q₁ drain-to-source is short circuited; - (iii) Resistor R₂ is open circuited; - (iv) Thermistor R₃ is open circuited. (8 marks) - (c) (i) Describe the checksum method of testing a microcomputer ROM memory. - (ii) Explain the drawback of the method in c(i). (6 marks) # 8080/8085 | OP CODE MNEMO | | AONIC | OP
CODE | | | OP
CODE | MNEMONIC
MOV D,M | OP
CODE | MNEMONIC | | OP | MNEMONIC XRA II | | OP
CODE | MNEI | MON | |--|--------|-------|------------|-------|-------|------------|---------------------|------------|----------|-------|----|-----------------|-----|------------|------|------| | 00 | NOP | | 28 | DCX H | ADD C | | | | VC | RST 2 | | | | | | | | 01 | LX1 | B,D16 | 2C | INR | L | 57 | MOV D.A | 82 | ADD | | AD | XRA | L | D8 | RC | | | 02 | STAX | В | 20 | DCR | L | 58 | MOV E,B | 83 | ADD | E | AE | XRA | M | D9 | | | | 03 | INX | В | 2E - | MVI | L,D8 | 59 | MOV E,C | 84 | ADD | н | AF | XRA | A | DA | JC | Adr | | 04 | INR | 8 | 2F | CMA | | 5A | MOV E,D | 85 | ADD | L | ВО | ORA | В | DB | IN | D8 | | 05 | DCR | В | 30 | SIM | | 58 | MOV E.E | 86 | ADD | M | B1 | ORA | C | DC | CC | Adı | | 06 | MVI | B,D8 | 31 | LXI | SPD16 | 5C | MOV E,H | 87 | ADD | Α | B2 | ORA | D | DD | | | | 07 | RLC | | 32 | STA | Adr | 5D | MOV E,L | 88 | ADC | В | 83 | ORA | E | DE | SBI | D8 | | 08 | - | | 33 | INX | SP | 5E | MOV E,M | 89 | ADC | С | B4 | ORA | H | DF | RST | 3 | | 09 | DAD | В | 34 | INR | M | 5F | MOV E,A | 8A. | ADC | D | 85 | ORA | L | EO | RPO | | | 0A | LDAX | В | * 35 | DCR | M | 60 | MOV H,B | 88 | ADC | Ε | 86 | ORA | M | E1 | POP | Н | | 08 | DCX | 8 | 36 | MVI | M,D8 | 61 | MOV H,C | 8C | ADC | н | B7 | ORA | Α | E2 | JPO | Adı | | OC | INR | С | 37 | STC | | 62 | MOV H.D | 80 | ADC | L | B8 | CMP | В | E3 | XTHL | | | OD | DCR | C | 38 | | | 63 | MOV H,E | 8E | ADC | M | 89 | CMP | С | E4 | CPO | Adı | | 0E | | C,D8 | 39 | DAD | SP | 64 | MOV H,H | 8F | ADC | Α | BA | CMP | D | E5 | PUSH | | | OF | RRC | | 3A | LDA | Adr | 65 | MOV H,L | 8G | SUB | В | 88 | CMP | Ε | E6 | ANI | D8 | | 10 | | | 38 | DCX | SP | 66 | MOV H,M | 91 | SUB | c | BC | CMP | н | E7 | RST | 4 | | 11 | | D,D16 | 3C | INR | A | 67 | MOV H,A | 92 | SUB | D | BD | CMP | L | E8 | RPE | | | 12 | | D | 3D | DCR | A | 68 | MOV L,B | 93 | SUB | E | BE | CMP | M | E9 | PCHL | | | 13 | | D | 3E | MVI | A,D8 | 69 | MOV L,C | 94 | SUB | н | 8F | CMP | A | EA | JPE | Ad | | 14 | INR I | D | 3F | CMC | | 6A | MOV L,D | 95 | SUB | L | CO | RNZ | | EB | XCHG | | | | | D | 40 | MOV | B,B | 6B | MOV L,E | 96 | SUB | M | C1 | POP | В | EC | CPE | Ad | | | | D,D8 | 41 | MOV | B,C | 6C | MOV L,H | 97 | SUB | A | C2 | JNZ | Adr | ED | | | | 17 | RAL | | 42 | MOV | B,D | 6D | MOV L,L | 98 | SBB | 8 | СЗ | JMP | Adr | EE | ERI | D8 | | 18 | | | 43 | MOV | B,E | 6E | MOV L,M | 99 | SBB | c | C4 | CNZ | Adr | EF | RST | 5 | | | | 0 | | MOV | в,н | 6F | MOV LA | 9A | SBB | D | C5 | PUSH | В | FO | RP | | | | LDAX (| | 45 | MOV | B,L | 70 | MOV M,B | 98 | SBB | E | C6 | ADI | DB | F1 | POP | PSV | | | | | 46 | MOV | B,M | 71 | MOV M,C | 90 | SBB | Н | C7 | RST | 0 | F2 | JP | Arti | | | INR E | | | MOV | B,A | 72 | MOV M,D | 9D | SBB | L | CR | RZ | | F3 | DI | | | | DRC E | | 48 | MOV | C,B | 73 | MOV M,E | 9E | SBB | M | C9 | RET | Adı | F4 | CP | Adı | | | | .D8 | | MOV | C,C | 74 | MOV M,H | 9F | 588 | A | CA | JZ | | F5 | PUSH | PSV | | | RAR | | | MOV | C,D | 75 | MOV M,L | AO | ANA | В | СВ | | | F6 | ORI | D8 | | | RIM | | | MOV | C,E | 76 | HLT | A1 | ANA | C | cc | CZ | Adr | F7 | RST | 6 | | All and the second second | | 1,D16 | | MOV | C,H | 77 | MOV M,A | A2 | ANA | D | CD | CALL | Adr | F8 | RM | | | | | Adr | | MOV | C,L | 78 | MOV A,B | A3 | ANA | E | CE | ACI | D8 | F9 | SPHL | | | William Tolk | INX F | | | MOV | C,M | 79 | MOV A,C | A4 | ANA | н | CF | RST | 1 | FA | JM | Arlı | | 2000 | INR H | | | | C,A | 7A | MOV A,D | A5 | ANA | L | DO | RNC | | FB | EI | | | | DCR H | | | | D,B | 7B | MOV A,E | A6 | ANA | M | DI | POP | D | FC | CM | Adr | | | | 1.08 | | | D,C | 7C | MOV A,H | A7 | ANA | A | D2 | JNC | Adr | FD | | | | | DAA | | | | D,D | 70 | MOV A.L | A8 | XRA | В | D3 | OUT | D8 | FE | CPI | D8 | | | | | | | D,E | 75 | MOV A,M | A9 | XRA | C | D4 | CNC | Adr | FF | RST | 7 | | No. of Concession, Name of Street, or other party of the Concession, Name of Street, or other pa | DAD H | 5-0-2 | | | р.н | 7F | MOV A,A | AA. | XRA | D | D5 | PUSH | 0 | | | | | 2A I | LHLD A | dr | 55 N | VOV | D,L | 80 | ADD B | AB | XRA | F | D6 | SUI | D8 | | | | D8 = constant, or logical/arithmetic expression that evaluates to an 8-bit data quantity. D16 = constant, or logical/arithmetic expression that evaluates to a 16-bit data quantity. Adr = 16-bit address. THIS IS THE LAST PRINTED PAGE