2207/303
COMMUNICATION AND NAVIGATION SYSTEMS
Oct./Nov. 2017
Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN AERONAUTICAL ENGINEERING AVIONICS (COMMUNICATION AND NAVIGATION OPTION)

COMMUNICATION AND NAVIGATION SYSTEMS

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination: Answer booklet:

Mathematical tables/non-programmable scientific calculator. Answer FIVE of the EIGHT questions in the answer booklet provided. All questions carry equal marks.

Maximum marks for each part of a question are as shown.

Candidates should answer the questions in English. Take: Free space wave velocity, $C = 3 \times 10^8 \text{ m/s}$.

This paper consists of 6 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

		(i)	quantization noise;	
		(ii)	Nyquist sampling rate.	(2 marks)
	(b)	(i)	A data transmission link consists of two four-input concent multiplexer. With the aid of a labelled block diagram, desort of the link.	
		(ii)	With the aid of a labelled diagram, describe the operation of topology.	of a star network (10 marks)
	(c)		f. signal of $4 \sin 600\pi$ t volts is transmitted using 8-bit Pulse I). Determine the:	e Code Modulation
		(i)	Nyquist sampling rate;	
		(ii)	quantization error voltage;	
		(iii)	signal-to-quantization noise ratio.	(8 marks)
2.	(a)	(i)	List two losses that occur in optical fibres.	
		(ii)	With the aid of a labelled diagram, describe the operation diode.	of a light emitting (8 marks)
	(b)	refrac	tical fibre has a core of refractive index of 1.72 and cladding tive index is 1.48. If the signal wavelength is 0.66 μ m and , determine the:	
		(i)	numerical aperture;	
		(ii)	signal frequency;	
		(iii)	number of modes that can be propagated.	(6 marks)
	(c)	Table	1 shows data for an optical fibre.	
		(i)	Plot the response curve.	
		(ii)	Determine the:	
			(I) frequency of operation; (II) spectrum of the fibre in wavelengths.	(6 marks)
2207/3	303		2	

Define each of the following with respect to pulse modulation systems:

1.

(a)

Wavelength (nm)	100	200	300	400	500	600	400	800	900
Output signal (µV)		9.5	22	38	45	36.5	18.5	11	5

- 3. (a) (i) List **two** errors associated with the very high frequency ormirange (VOR) radio navigation aid.
 - (ii) Sketch the A scope radar display and explain its shape. (10 marks)
 - (b) Explain how marker beacons are used as navigation aids in instrument landing systems. (5 marks)
 - (c) A radar system, operating at 8 GHz over a bandwidth of 750 kHz, uses an amplifier with a noise figure of 9 dB and an antenna whose diameter is 2 m. If the antenna radiates 20 kW and the target cross-sectional area is 6 m², determine the radar range.

 (5 marks)
- 4. (a) (i) List three areas of application of a varactor diode.
 - (ii) Draw a labelled block diagram of a high-level amplitude modulation (AM) transmitter and describe its operation. (9 marks)
 - (b) An FM stereo encoder has a carrier wave of 19 kHz and a stereo signal sub-carrier of 38 kHz. If the a.f input signal ranges from O Hz to 15 kHz, draw a labelled spectral band for the composite signal. (3 marks)
 - (c) An AM system has a 20 kW carrier wave of amplitude 10 V and a modulating signal of amplitude 8 V.
 - (i) Sketch the AM waveform;
 - (ii) Determine the:
 - (I) modulation index;
 - (II) radiated power;
 - (III) transmission efficiency.

(8 marks)

- 5. (a) Define each of the following as applied to antennas:
 - (i) effective aperture;
 - (ii) front-to-back ratio.

(2 marks)

- (b) (i) With the aid of a labelled diagram, describe the operation of a horn-feed microwave antenna.
 - (ii) Figure 1 shows the polar diagrams of two different antennas. Explain, with reason(s), which antenna is suitable for:
 - (I) radiation of signals at 700 kHz;
 - (II) reception of TV signals.

(9 marks)

Antenna A

Antenna B

Fig. 1

- (c) A 5-element dipole end-fire array radiates 5 kW at 60 MHz towards a receiving antenna located 120 km away. If the path attenuation is 25 dB, determine the:
 - (i) power flux density at the receiving point;
 - (ii) power received by the antenna if its gain is 12 dB.

(9 marks)

- 6. (a) (i) List two factors that determine the fidelity of a radio receiver.
 - (ii) With the aid of a labelled block diagram, describe the operation of an AM superheterodyne radio receiver. (10 marks)
 - (b) Table 2 shows data for a radio receiver tuned between 80 MHz and 120 MHz.
 - (i) plot the sensitivity response curve;
 - (ii) determine the:
 - (I) receiver sensitivity;
 - II) frequencies at which sensitivity is 27.5 μ V.

(6 marks)

Table 2

Input signal (µV)	44	31.5	22.5	15	10	10.5	17	25	38.5
Frequency (MHz)	80	85	90	95	100	105	110	115	120

- (c) With the aid of a circuit diagram, describe the operation of a series i.f trap in a radio receiver. (4 marks)
- 7. (a) Define each of the following with respect to satellite communication:
 - (i) perigee;
 - (ii) angle of inclination.

(2 marks)

- (b) (i) Explain "program tracking" as applied to an earth station antenna.
 - (ii) With the aid of a labelled diagram, describe the operation of a tunnel diode amplifier. (10 marks)
- (c) A rectangular waveguide, having a plane separation of 4 cm, operates at 12 GHz when carrying the dominant mode. Determine the:
 - (i) cut-off wavelength;
 - (ii) guide wavelength;
 - (iii) group velocity;
 - (iv) phase velocity.

(8 marks)

- 8. (a) (i) Define each of the following as applied to radar systems:
 - (I) 2nd return echoes;
 - (II) maximum unambiguous range;
 - (ii) With the aid of a labelled diagram, describe the plan-position indicator (PPI) radar display. (9 marks)
 - (b) Figure 2 shows a line-pulser used in pulsed radar systems. Explain its operation. (4 marks)

Fig. 2

(c) An MTI radar system operates at 4 GHz with a pulse repetition frequency of 900 pulses per second. Determine the lowest three blind speeds for the radar. (7 marks)

THIS IS THE LAST PRINTED PAGE.