2203/302 DATA COMMUNICATION Oct./Nov. 2011

Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN TELECOMMUNICATION ENGINEERING

DATA COMMUNICATION

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination: Answer booklet; Non-programmable calculator.

Answer any FIVE of the EIGHT questions in this paper.
All questions carry equal marks.
Maximum marks for each part of a question are as shown.

This paper consists of 6 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

- 1. (a) State any **two** features of each of the following networks:
 - (i) Local Area Network;
 - (ii) Metropolitan Area Network.

(4 marks)

- (b) Describe the Carrier Sense Multiple Access with Collision Detection (CSMA/CD) access protocol. (6 marks)
- (c) A CSMA/CD system has a transmission rate on the bus of 10Mbps. The bus is 2Km long and propagation delay is 5μs/Km. Packets are 1000 bits long. Determine the:
 - (i) end to end delay, 7d;
 - (ii) packet duration γ_p ;
 - (iii) maximum utilization on the bus;
 - (iv) maximum bit-rate.

(10 marks)

- 2. (a) Explain the need for considering the following in the choice of line encoding schemes:
 - (i) differential enconding;
 - (ii) noise immunity.

(4 marks)

(b) Figure 1 shows a Manchester encoded waveform. Decode the bit pattern.

- (ii) For the Bipolar Alternate Mark Inversion line encoding scheme:
 - I. sketch the resulting waveform for the message sequence 1001101;
 - II. determine it efficiency. (7 marks)

(c) A phase modulation system transmits the modulated signal $A \cos(2\pi f_c t + \phi)$ where the phase ϕ , is determined by the two information bits transmitted as indicated in Table 1.

Phase (ϕ)	bit-pattern	
0	0	0
$\frac{\pi}{2}$	0	1
π	1	0
$\frac{3\pi}{2}$	1	1

- sketch the signal constellation diagram for this modulation scheme;
- II. state **two** ways of modifying the modulation scheme in (I) to obtain an eight-point constellation diagram.
- (ii) Stereo audio signals are to be transmitted using a digital modem. Each audio is signal is sampled at a rate of 40 Kilosamples/second and quantized into one of the possible 65,536 quantization levels. For this system determine the:
 - bit-rate produced by each stereo audio signal;
 - II. number of points required in the signal constellation.

(9 marks)

3. (a) Explain the need for non-uniform quantization of voice signals.

(3 marks)

- (b) (i) With the aid of a labelled diagram illustrate how the eye-diagram is used to determine the extent of intersymbol interference and sensitivity to timing error.
 - (ii) An audio signal with spectral components limited to the frequency band to 3300Hz is to be sampled at 1.5 times the Nyquist rate and transmitted through a pulse coded Modulation System. The ratio of the peak signal power to the average quantization noise power at the output needs to be 30dB.

 Determine the:
 - I. minimum number of bits per sample;
 - II. minimum number of uniform quantization levels;
 - III. bit-rate;
 - IV. minimum system bandwidth.

(17 marks)

- 4. (a) Define the following as applied to error control.

 (i) code weight;

 (ii) code redundancy. (2 marks)
 - (b) (i) The generator-matrix of a (7, 4) code is given by:

$$G = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

For this code, determine the:

- I. codeword corresponding to the message 1110;
- II. parity check matrix, H;
- III. syndrome for the received vector 1101101 and comment on the answer.
- (ii) For the code matrix in b(i), determine the error detecting capability.

(12 marks)

- (c) A series of information frames with a mean length of 1000 bits is to be transmitted across a data link 4000 Km long at a data rate of 2Mbps. If the link has a velocity of propagation of 2 x 10⁸ m/s and a bit error rate (BER) of 10⁻⁴, determine the link utilization efficiency assuming Stop and Wait ARQ protocal. (6 marks)
- 5. (a) (i) describe the **three** High Level Data Link Control (HDLC) protocal data transfer modes;
 - (ii) state the **three** different types of frames used in the Link Access procedure balanced protocal. (9 marks)
 - (b) Draw a labelled frame format of the IEEE 802.3 Medium Access Control frame and state the function of each field. (8 marks)
 - (c) With reference to the X.25 protocal, describe the function of the Packet Assembler/
 Disassembler. (3 marks)
- 6. (a) (i) Describe any **three** disadvantages of circuit switching as a mode of transmitting data.
 - (ii) A circuit switched network has the following characteristics:

length between any pair of stations = 1000 Km. number of nodes across the network = 100 nodes. data rate = $1 \times 10^4 \text{ bits/sec}$. propagation velocity = $2 \times 10^8 \text{m/s}$

set up time by each node = 30ms

For a message of length 5 x 10^6 bits, determine the:

- I. transmission time;
- II. transmission efficiency.
- (iii) Comment on the efficiency of the system in a(ii) II if the length of the message is increased. (16 marks)

- (b) Describe the following Integrated Services Digital Network interfaces:
 - (i) basic rate interface;
 - (ii) primary rate interfaces.

(4 marks)

- 7. (a) Describe the use of the following passive devices in optical transmission:
 - (i) attenuators;
 - (ii) isolators.

(4 marks)

(b) From the fiber-optic installation plan of a campus, the following information is available.

Total fibre optic link length = 3Km

Number of required optical splices = 2

Number of connections = 2

Loss per splice/connection = 0.1 dB

Design margin estimate = 2 dB

Optical loss due to any other component in the system is negligible.

Table 1 shows the specifications of the two sets of equipment available from the manufacturer.

SET	EQUIPMENT SPECIFICATIONS
1	Fibre diameter = 62.5/125µM Fibre attenuation = 2.5dB/km Transmitter power = -25dBm Receiver sensitivity = -35dBm
2	Fibre diameter = 62.5/125µM Fibre attenuation = 1.5dB/km Transmitter power = -8dBm Receiver sensitivity = -18dBm

- (i) Determine the total link loss if the installation is implemented with equipment from:
 - I. set I;
 - II. set 2.
- (ii) Determine with reasons the most suitable set of equipment for the implementation.

(10 marks)

(c)	Describe the following forms of dispersion in optical fibre cables, stating he can be minimised:		
	(i)	medal;	
	(ii)	material. (6 marks)	
(a)	(i)	With the aid of a diagram describe the 20mA current loop interface.	
	(ii)	State one advantage of the interface in (a) (i) over the EAI -RS 232 interface. (8 marks)	
(b)	(i)	Define the following as used in Time Division Multiplaxing (TDM). I. channel; II. frame.	
	(ii)	For a 3 - channel TDM system describe its operation under the following headings: I. transmitter; II. channel; III. receiver. (12 marks)	

8.