2506/202 2507/202 ELECTRONICS AND CONTROL SYSTEMS March/April 2024 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN AERONAUTICAL ENGINEERING (AIRFRAMES AND ENGINES OPTION) (AVIONICS OPTION)

MODULE II

ELECTRONICS AND CONTROL SYSTEMS

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet;

Mathematical tables / Non-programmable scientific calculator;

Drawing instruments.

This paper consists EIGHT questions in TWO sections; A and B.

Answer **THREE** questions from section A and TWO questions from section B in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 8 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2024 The Kenya National Examinations Council

Turn over

SECTION A: ELECTRONICS

Answer THREE questions from this section.

- 1. (a) (i) Define 'atomic number' with respect to semiconductors.
 - (ii) Figure 1 shows the energy band structure of a semiconductor.

Identify the bands labelled A, B and C.

(4 marks)

- (b) With aid of a construction diagram, describe the operation of N-channel, depletion MOSFET. (8 marks)
- (c) Figure 2 shows a Junction Field Effect Transistor (JFET) with voltage divider bias. The drain voltage $V_D = 7V$.

Fig. 2

Determine the:

- (i) drain current, I_D;
- (ii) source voltage, Vs;
- (iii) gate voltage, V_G;
- (iv) gate-to-source voltage, VGS.

(8 marks)

2. (a) State three advantages of negative feedback in amplifiers.

(3 marks)

(b) Figure 3 shows a single stage common emitter amplifier.

Given that $h_{ie}=1.1~k\Omega$, $h_{oe}=25~\mu A/V$, $h_{fe}=50$ and $h_{re}=2.5\times 10^{-4}$, determine the:

- (i) input resistance, Ri;
- (ii) overall current gain, Ais;
- (iii) overall voltage gain, Avs.

(10 marks)

(c) With aid of a circuit diagram, explain the operation of a Hartley oscillator.

(7 marks)

3.	(a)	(i)	Define 'multi-vibrator' with respect to wave generators.	
		(ii)	Distinguish between astable and monostable multi-vibrators.	
				(3 marks)
	(b)	(i)	With aid of a circuit diagram, describe the operation of a negative of	ipper.
		(ii)	Draw the input and output waveforms of the circuit in b(i).	
				(7 marks)
	(c)	An op-amp has a differential gain of 80 dB and a common mode rejection ratio (CMRR) of 95 dB. The input voltages at the inverting and non-inverting inputs are $V_1 = 2\mu V$ and $V_2 = 1.6\mu V$ respectively.		
		Determine the:		
		(i)	absolute differential gain;	
		(ii)	differential output voltage;	
		(iii)	common mode gain;	
		(iv)	common mode output voltage.	(8 marks)
				(o marks)
	(d)	Draw	and label circuit diagram of a single phase half-wave controlled rectif	ier. (2 marks)
4.	(a)	Conv	ert the number (82.25) ₁₀ to its equivalent:	
		(i)	binary;	
		(ii)	hexadecimal.	
				(6 marks)
	(b)	An aircraft warning lamp, L turns ON if the aircraft is airborne and either a seat belt is not buckled or a window is not closed.		
		Takin	g signals for:	
			Lamp, L = 1 when it is ON	
		•	Aircraft, A = 1 when it is airborne	
			Seat belt, B = 1 when not buckled	
		•	Window, C = 1 when not closed	
		(i)	Draw a truth table for this operation;	
		(ii)	Write down the simplified boolean expression;	
		(iii)	Implement the boolean expression using logic gates.	(8 marks)
2506	/202		4	(O marks)
	// 202 h/April 20)24		

- (c) (i) Draw the logic circuit of a half adder;
 - (ii) Write the truth-table of the circuit in c(i).

(6 marks)

- 5. (a) Distinguish between 'fan in' and 'fan out' with respect to logic gates;
 - (ii) Draw a two-input NOR gate using resistor transistor logic (RTL).

(5 marks)

(b) Figure 4 shows a shift register implemented using D flip-flops.

- (i) State the type of shift register represented;
- (ii) Describe its operation;
- (iii) Draw the timing waveforms for five clock cycles.

(9 marks)

(c) A ROM memory has a capacity of 16kB.

The internal architecture of the ROM uses a square matrix of cells.

Determine the:

- (i) number of cells in each row;
- (ii) total number of address inputs;
- (iii) type of row decoder.

(6 marks)

SECTION B: CONTROL SYSTEMS

Answer TWO questions from this section.

- 6. (a) Define each of the following with respect to control systems:
 - (i) transfer function;
 - (ii) controlled variable.

(2 marks)

- (b) Figure 5 shows a block diagram of a closed-loop system.
 - (i) simplify the block diagram to its canonical form;
 - (ii) determine the closed loop transfer function $\frac{C_{(s)}}{R_{(s)}}$. (8 marks)

(c) The unit step response of a closed loop control system is given by the expression:

$$\frac{C_{(s)}}{R_{(s)}} = \frac{36}{S^2 + 2S + 36}$$

Determine the:

- (i) rise time;
- (ii) peak time;
- (iii) maximum overshoot;
- (iv) settling time of within 2% of the final value.

(10 marks)

- 7. (a) Define each of the following with respect to control system stability:
 - (i) poles;
 - (ii) zeros.

(2 marks)

- (b) With aid of response curves, describe each of the following types of system stability:
 - (i) bounded input bounded output;
 - (ii) bounded input unbounded output.

(8 marks)

(c) The transfer function of a control system is given by the expression:

T.F =
$$\frac{(s+1)(s-2)}{s(s-4)(s+5)(s+3)}$$

- (i) Determine the system's poles and zeros;
- (ii) Draw a pole-zero plot for the system;
- (iii) From the plot in c(ii), determine the system stability.

(7 marks)

- (d) With reference to Bode plot stability criterion, state the relationship between phase and gain crossover frequency for each of the following systems:
 - (i) stable;
 - (ii) marginally stable;
 - (iii) unstable.

(3 marks)

State three effects of phase lead compensation in a control system; 8. (i) (a) Draw a phase lag compensator network circuit. (ii) (6 marks) Describe micro-stepping with respect to stepper motors. (4 marks) (b) A stepper motor has a step angle of 2.5°. Determine the: (c) resolution; (i) number of steps required to make 25 revolutions; (ii) (iii) shaft speed if the stepping frequency is 3600 pulses per second. (6 marks)

Draw a schematic circuit diagram of a single phase a.c servomotor.

(4 marks)

THIS IS THE LAST PRINTED PAGE.

(d)