2507/305
ELECTROMAGNETIC FIELD
THEORY
March/ April 2024
Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN AERONAUTICAL ENGINEERING (AVIONICS OPTION)

MODULE III

ELECTROMAGNETIC FIELD THEORY

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination: answer booklet;

non-programmable scientific calculator.

This paper consists of EIGHT questions.

Answer any FIVE questions in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as shown.

Candidates should answer the questions in English.

Take: Permittivity of free space, $\varepsilon_0 = 8.854 \times 10^{-12} \text{ F/m}$ Permeability of free space, $\mu_0 = 4\pi \times 10^{-7} H/M$;

This paper consists of 5 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2024 The Kenya National Examinations Council.

Turn over

- 1. (a) (i) State two sources of electromagnetic waves.
 - (ii) Draw the electromagnetic wave spectrum in the direction of increasing wavelength. (6 marks)
 - (b) State two:
 - (i) properties of electromagnetic radiation.
 - (ii) applications of electromagnetic radiation.

(4 marks)

- (c) (i) Describe cross product of two vectors
 - (ii) Given the vector $\bar{A} = \rho \cos \phi \bar{a} \rho + Z \sin \phi \bar{a} \phi$, evaluate $\oint \bar{A}.d\bar{l}$ around the edge l of the wedge defined by $0 \le \rho \le 2$, $0 \le \phi \le 60^{\circ l}$, Z=0 shown in figure 1. (10 marks)

Fig. 1

- 2. (a) (i) State Gauss' law of electrostatics.
 - (ii) Figure 2 shows an infinite line charge density ρ_L C/m lying a long the Z-axis. Using Guss' law, derive the expression for electric field intensity.

(iii) A uniform charge of line distribution density $\rho_L = 25 \, nC/m$ is located at x = 3 m and y = -5 m. Determine the electric field at (-3, -1, 5)m.

(12 marks)

- (b) For the vector field $\bar{A} = x^2yz \ \bar{a} \ x + xz \ \bar{a}z$, determine its:
 - (i) Diverge, $\nabla . \bar{A}$
 - (ii) curl, $\nabla \times \bar{A}$

(8 marks)

- 3. (a) State;
 - (i) four properties of electric field lines.
 - (ii) superposition principle of electrostatic forces.

(5 marks)

- (b) Using superposition principle, derive the expression for resultant force experienced by a test charge Q due to point charges Q₁,Q₂, Q₃ Q_n located at distance R₁, R₂, R₃ R_n respectively. (3 marks)
- (c) (i) Define electric field intensity.
 - (ii) Derive the expression for force, F on a point charge q located (0,0, h) m due to charge of surface charge density ρ_s C/m² uniformly distributed over the circular surface r = a, z = 0 m. (12 marks)
- 4. (a) State the **four** fundamental vector field quantities.

(4 marks)

- (b) (i) Distinguish between convection and conduction currents in electromagnetic field.
 - (ii) A 9.6×10^9 Hz uniform plane wave is propagating in space where $\mu_{\tau} = 2$ and $\varepsilon_{\tau} = 3$. Determine the:
 - (I) Velocity of propagation;
 - (II) Phase constant,
 - (III) Intrinsic impedance.

(8 marks)

(c) Table 1 shows electromagnetic field quantities, symbols and units. Copy and fill the table.

Table 1

Field Quantity	Symbol	Unit
	F	
Conductivity		
	Ĵ	
	-	С

(8 marks)

- 5. (a) From the equation $\nabla \times \bar{H} = \bar{J}$, derive the equation of continuity for magnetostatic fields. (4 marks)
 - (b) (i) Distinguish between Lossy and Lossless dielectrics.
 - (ii) An electric field in free space is given by $\bar{E} = 50 \cos(10^8 t + \beta x) \bar{a}y V/m$. Determine the
 - (I) Direction of propagation;
 - (II) Constant β
 - (III) time it takes to travel a distance of $\frac{\lambda}{2}$. (10 marks)
 - (c) (i) State poynting's theorem.
 - (ii) In a non-magnetic medium, the electric field intensity is: $\bar{E} = 4 \sin{(2\Pi \times 10^7 t 0.08x)} \, \bar{a}x \, V/m$. Determine the time-average power carried by the wave, given the intrinsic impedance. (6 marks)
- 6. (a) (i) List three electrical devices whose operation is based on magnetic field effect;
 - (ii) Distinguish between magnetic scalar potential and magnetic vector giving an expression for each quantity. (7 marks)
 - (b) Figure 3 shows a cylindrical Gaussian surface for magnetostatic field at the interface between two different dielectrics of permeabilities μ_1 and μ_2 respectively. Using Gauss's law, show that the normal component of the magnetic flux density (β) is continuous across the boundary. (5 marks)

Fig. 3

(c) With the aid of a labelled diagram, describe the operation of Faraday's disc generator.

(8 marks)

- 7. (a) (i) Define uniform plane wave as used in electro magnetic fields.
 - (ii) The equation of a wave in a lossless medium is described by:

$$Ey(x,t) = C_1 \cos(wt - \beta x) + C_2 \cos(wt + \beta x)$$

- (I) Obtain the expression for the wave in positive direction.
- (II) Determine the wave velocity;
- (III) Describe the wave at the instant when $C_1 = C_2$.

(7 marks)

- (b) (i) Define electrostatic potential
 - (ii) Three point charges -1nC, 4nC and 3nC are located at (0,0,0), (0,0,1) and (1,0,0) respectively. Determine the energy in the system. (8 marks)
- (c) An A.C voltage source V = V_o Sin wt is connected across a parallel plate capacitor C. Show that the displacement current in the capacitor is the same as the conduction current in the wires. (5 marks)
- 8. (a) (i) State Gauss' law in eletrostatics.
 - (ii) Applying the law in a(i), show that $\nabla \cdot \bar{D} = \rho$ where \bar{D} electric flux density. ρ_V volume charge density. (7 marks)
 - (b) Given $\bar{D} = y^2 z^3 \bar{a}x + 2xyz^3 \bar{a}y + 3xy^2 z^2 \bar{a}z \ pc/m^2$ in free space, determine the
 - (I) Total flux passing through the surface x = 3, $0 \le y \le 2$, $0 \le z \le 1$ in metres in the direction away from the origin.
 - (II) Magnitude of electric field intensity at P(3,2,1). (9 marks)
 - (c) State frequency range for each of the following telecommunication bands:
 - (i) VHF;
 - (ii) MF.

(4 marks)

THIS IS THE LAST PRINTED PAGE.