2521/105 2602/106 2601/106 2603/106 ELECTRICAL MEASUREMENTS AND ANALOGUE ELECTRONICS I March/April 2024 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN ELECTRICAL AND ELECTRONIC ENGINEERING (POWER OPTION) (TELECOMMUNICATION OPTION) (INSTRUMENTATION OPTION)

MODULE I

ELECTRICAL MEASUREMENTS AND ANALOGUE ELECTRONICS I

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet;

Mathematical tables/Non-programmable scientific calculator;

Drawing instrument.

This paper consists of EIGHT questions in TWO sections; A and B.

Answer THREE questions from section A and TWO questions from section B in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 7 printed pages.

Candidates should check the question paper to ascertain that all pages are printed as indicated and that no questions are missing.

© 2024 The Kenya National Examinations Council

Turn over

SECTION A: ELECTRICAL MEASUREMENTS

Answer THREE questions from this section.

- 1. (a) (i) State two sources of errors in Q-meter measurements.
 - (ii) With aid of a circuit diagram describe the measurement of the Q- factor of a coil using a Q-meter.

(10 marks)

- (b) (i) State three detectors used in a.c bridges.
 - (ii) Figure 1 shows a circuit diagram of Maxwell's inductance bridge. Obtain the expressions for R₁ and L₁ in terms of other circuit components under balance condition. (10 marks)

Fig. 1

- 2. (a) Define each of the following types of failures in electrical/electronic equipment:
 - (I) Catastrophic;
 - (II) Partial:
 - (III) Sudden.
 - (ii) State **three** benefits of carrying out maintenance of electrical/electronic equipment: (6 marks)
 - (b) In a working period of 100 hours, an electronic equipment fails 2 times. The total time taken for repair in the same period is 3 hours. Determine the:
 - (i) mean time to repair;
 - (ii) mean time between failure;
 - (iii) failure rate;
 - (iv) availability.

(8 marks)

2521/105 2602/106 2601/206 2603/106

March/April 2024

2

- The reliability (R) of an equipment is given by the expression $R = \ell^{-\lambda t}$, where (c) (i) $\lambda = failure \ rate \ and \ t = operating \ time$. Obtain the expression for the unreliability (Q) of the equipment.
 - Sketch, on the same axes, curves for reliability and unreliability of an (ii) equipment.

(6 marks)

- 3. Derive, from first principles, the dimensional equations for the following mechanical (a) quantities using MKS system of measurements:
 - (i) force:
 - (ii) energy.

(8 marks)

(b) The resistance (R) of a conductor is given by the expression $R = \frac{\rho l}{a}$, where ρ = resistivity, l = length and a=cross-section area. Derive the dimensional equation of resistivity using the LMTI system of dimensions.

(6 marks)

- A sinusoidal voltage is observed on an oscilloscope as having a peak-to-peak amplitude (c) of 8.4 cm. The vertical sensitivity setting of the oscilloscope is 5V/cm. For the voltage, determine the:
 - (i) peak-to-peak value;
 - (ii) amplitude;
 - (iii) r.m.s value.
- 4. (a) State two possible causes of faults in:

(6 marks)

- wire-wound resistors; (i)
- (ii) aluminium electrolytic capacitors.

(4 marks)

- Figure 2 shows a series chain of blocks making up an electronic system. It is assumed (b) that block 2 is faulty.
 - Using half-split method, describe how to identify the faulty block. (i)
 - State the assumptions made in the method in b(i). (ii)

(6 marks)

2521/105 2602/106 2601/106 2603/106 March/April 2024

3

Turn over

- (c) An audio frequency power amplifier is to be tested after repair using an audio frequency signal generator and an oscilloscope:
 - (i) Draw a labelled block diagram for the test set-up;
 - (ii) Describe the test for the output power from the set-up in c(i).

(7 marks)

(d) State three test equipment used in the maintenance of digital logic circuits.

(3 marks)

- 5. (a) State **three** methods of minimizing instrument errors in wattmeters during power measurements.
 - (ii) Figure 3 shows a circuit diagram of the two-wattmeter method of power measurement in a 3-phase balanced load. Show that the total power, P_T from this measurement is given by the expression, $P_T = \sqrt{3} \ V_L I_L \cos \phi$, where $V_L = \text{line voltage}$, $I_L = \text{line current}$ and $\phi = \text{phase angle between}$ V_L and I_L (11 marks)

Fig. 3

- (b) (i) Distinguish between primary fundamental/units and auxiliary fundamental units.
 - (ii) Describe 'standard' with respect to measurements.

(5 marks)

- (c) A standard cell of internal resistance 500Ω has a voltage rating of 1.018500 V. The insulation resistance between its terminals is $5M\Omega$. Determine the:
 - (i) current drain due to the insulation resistance;
 - (ii) internal voltage drop.

(4 marks)

SECTION B: ANALOGUE ELECTRONICS I

Answer TWO questions from this section.

- 6. (a) (i) State **two** ways of ionizing an atom;
 - (ii) Distinguish between positive and negative ions.

(4 marks)

- (b) (i) Draw and label the energy band diagram of a semiconductor material;
 - (ii) Define each band in b(i).

(6 marks)

(c) With aid of a labelled diagram, describe the formation of a P-type semiconductor.

(6 marks)

- (d) Sketch, on the same axes, the forward and reverse characteristic curves of a *p-n* semiconductor diode. (4 marks)
- 7 (a) Figure 4 shows a basic block diagram of a cathode-ray oscilloscope.

Fig. 4

2521/105 2602/106 2601/106 2603/106 March/April 2024

5

Turn over

- (i) Identify the blocks marked P, Q, R, and S.
- (ii) Explain the function of the capacitor C and switch S_1 combination.
- (iii) Sketch the waveform at the output of the timebase generator.

(10 marks

- (b) Figure 5 shows a circuit diagram of a common-collector amplifier. Assuming $V_{L} = 0.7V$ and $I_E \simeq I_C$, determine the following bias quantities;
 - (i) V_B;
 - (ii) V_{E} ;
 - (iii) I_E;
 - (iv) V_c;
 - (v) V_{CE}

(10 marks)

Fig.5

- 8. (a) Define each of the following JFET parameters:
 - (i) mutual conductance;
 - (ii) drain-source resistance.;

(2 marks)

- (b) Table 1 shows the data for an n-channel JFET. Use the data in the table to determine the following devise parameters:
 - (i) mutual conductance at $V_{DS} = 5V$;
 - (ii) drain -source resistance at $V_{GS} = -3V$;
 - (iii) amplification factor.

(6 marks)

Table 1

V _{DS} (V)	I _D (mA)		
	$V_{cs} = -2V$	$V_{cs} = -3V$	$V_{cs} = -4V$
1	3.1	4.6	6.6
3	3.5	5.1	6.9
5	3.9	5.6	7.2
7	4.3	6.1	7.8
9	4.7	6.6	8.4

- (c) With aid of a circuit diagram, describe the operation of a full-wave voltage double.

 (6 marks)
- (d) A d.c power supply has an output of 60V at no load and 56V at full load. The rms value of the ripple voltage at no load is 1.5V. Determine the:
 - (I) Voltage regulation;;
 - (II) Percent ripple.;
 - (ii) Sketch the voltage regulation curves for the power supply in d(i).

(6 marks)

THIS IS THE LAST PRINTED PAGE.

2521/105 2602/106 2601/205 2603/106 March/April 2024