2506/202 2507/202 ELECTRONICS AND CONTROL SYSTEMS Oct/Nov 2023 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN AERONAUTICAL ENGINEERING (AIRFRAMES AND ENGINES OPTION) (AVIONICS OPTION)

MODULE II

ELECTRONICS AND CONTROL SYSTEMS

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet;

Mathematical tables / Non-programmable scientific calculator;

Drawing instruments.

This paper consists EIGHT questions in TWO sections; A and B.

Answer **THREE** questions from section A and TWO questions from section B in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 9 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2023 The Kenya National Examinations Council

Turn over

SECTION A: ELECTRONICS

Answer THREE questions from this section.

- 1. (a) Distinguish between:
 - (i) intrinsic and extrinsic semiconductors;
 - (ii) majority and minority charge carriers.

(4 marks)

(b) The voltage-ampere equation of a semiconductor diode is given by

$$i_D = I_0 \left(e^{\frac{V_D}{\eta V T}} - 1 \right)$$

- (i) Identify each parameter.
- (ii) Sketch the diode characteristic.
- (iii) Derive the expression for the dynamic resistance of the diode,

$$\frac{dV_D}{di_D}$$
 (8 marks)

- (c) (i) With aid of a sketch, describe transistor load line and state its significance.
 - (ii) Differentiate biasing of class A and class B push-pull transistor amplifiers.

(8 marks)

- 2. (a) Perform each of the following arithmetic operations in the given number systems:
 - (i) $(AFCD)_{16} + (9AAC)_{16}$;
 - (ii) $(467)_8 (276)_8$;
 - (iii) $0111\ 1001_{BCD} + 0011\ 0111_{BCD}$

(6 marks)

- (b) Simplify each of the following Boolean expressions:
 - (i) $(D+\overline{E})(D+E)$
 - (ii) $WXY + W\overline{X}Y + WX\overline{Y} + W\overline{X}\overline{Y}$.

(6 marks)

- (c) Table 1 shows the truth table of a 2-bit multiplier with inputs A_1A_0 , B_1B_0 and output P_3P_2 P_1P_0 .
 - (i) Complete the truth table.
 - (ii) Draw a logic circuit diagram to implement the multiplier using 3-to-8 decoders and gates. (8 marks)

Table 1

Input				Output			
A_1	A_0	B_1	B_0	P_3	P_2	P_1	P_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	-	_		-
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	0	0	0	1
0	1	1	0	-	-	-	_
0	1	1	1	0	0	1	1
1	0	0	0	0	0	0	0
1	0	0	1	_	-	_	-
1	0	1	0	0	1	0	0
1	0	1	1	0	0	1	1
1	1	0	0	0	0	0	0
1	1	0	1	-	-	_	
1	1	1	0	0	1	1	0
1	1	1	1	1	0	0	1

3. (a) Define a transistor model.

(1 mark)

(b) Figure 1 shows a circuit diagram of a common-emitter amplifier. The silicon transistor Q has $\beta=200$, $V_{\rm BE}=0.7\,V$ and the resistance of the emitter diode $r=\frac{25}{I_{\rm E}(mA)}\Omega$.

2506/202 2507/202 Oct./Nov. 2023

(i)	Draw the equivalent circuit diagram of the amplifier.						
(ii)	Determine the:						
	I. Thevenin input voltage;						
	II. Thevenin input resistance;						
	III. emitter-base diode resistance, r_e						
	IV. output a.c load resistance;						
	V. voltage gain.	(13 marks)					
Briefl	y describe the working of each of the following display devices:						
(i)	cathode ray tube (CRT);						
(ii)	liquid crystal display (LCD). (6 marks)						
Defin	e each of the following with respect to analog-to-digital converters (AD	OCs):					
(i)	conversion speed;						
(ii)	monotonicity.						
With	aid of a block -schematic diagram, describe the counter-based ADC.	(6 marks)					
	KX8 RAM is made from 8KX8 RAM chips. The RAM memory starts ss 1000H.	form					
(i)	Determine the:						
	I. number of RAM chips required;						
	II. memory address range of each RAM chip;						
	III. size of decoder required.						
(ii)	Draw a schematic block diagram of the memory implementation.	(12 marks)					
A 32 addre	KX8 RAM is made from 8KX8 RAM chips. The RAM memory starts ss 1000H. Determine the: I. number of RAM chips required; II. memory address range of each RAM chip; III. size of decoder required.	form					

5. transistors (BJTs). (3 marks)

2506/202 2507/202 Oct JNov. 2023

(c)

(a)

(b)

(c)

4.

(b) Figure 2 shows the characteristic curve of a MOSFET.

Fig. 2

- (i) Identify the regions labelled x, y and z and explain their significance.
- (ii) Distinguish between enhanced and depletion modes of operating MOSFETs. (8 marks)

(c) Figure 3 shows a block diagram of a negative feedback amplifier where A is the gain without feedback and β is the feedback factor.

- (i) Derive the expression of the gain with feedback.
- (ii) An amplifier has a gain of 1000 and a negative feedback of 0.22. Determine the voltage gain with feedback.
- (iii) State three effects of negative feedback on an amplifier. (9 marks)

SECTION B: CONTROL SYSTEMS

Answer TWO questions from this section.

6. (a) A control system is described by the following open-loop expression.

$$G(s) = \frac{10(s+2)(s-4)}{s(s+1)(s+3)}$$

- (i) Determine the:
 - I. poles;
 - II. zeros.
- (ii) Sketch the poles and zeros on a s-plane.
- (iii) State with reasons the stability of the system.

(9 marks)

(b) A unity feedback system has an open-loop transfer function

$$G(s) = \frac{k}{s(s+10)}$$

- (i) Determine the:
 - I. characteristic equation;
 - II. value of k so that the system will have a damping ratio of 0.5.
- (ii) For this value of k determine, for a unit step input, the:
 - I. settling time;
 - II. percentage peak overshoot.

(11 marks)

- 7. (a) With aid of block diagrams, describe each of the following:
 - (i) transfer function;
 - (ii) series compensation.

(6 marks)

(b) A signal flow graph is described by the following linear equations:

$$y = y_1 + \alpha \cup$$

$$\dot{y}_1 = -\beta y_1 + y_2 + \alpha_2 \cup$$

$$\dot{y}_2 = -\beta_2 y_1 + \alpha \cup$$

- (i) Determine the transfer function of the equations using Laplace transforms.
- (ii) Draw the signal flow diagram.
- (iii) Using Mason's rule, determine the transfer function of the system.

(14 marks)

- 8. (a) State **two** advantages of servomotors over stepper motors with respect to control system. (2 marks)
 - (b) A unity feedback control system is described by the open-loop transfer function:

$$G(s) = \frac{k}{s(s^2 + 2s + 2)(s^2 + 6s + 10)}$$

Determine each of the following with respect to root locus:

- (i) the zeros;
- (ii) the poles;
- (iii) centroid;
- (iv) asymptotic angles.

(8 marks)

2506/202 2507/202 Oct /Nov. 2023

- Figure 4 shows a Nichols plot for a control system. Determine the: (c)
 - (i) (ii) phase margin; gain margin;

 - (iii) peak value of closed-loop gain response, Mp;
 - (iv) resonant frequency;
 - (v) bandwidth.

(10 marks)

THIS IS THE LAST PRINTED PAGE.

2506/202 2507/202 Oct /Nov. 2023