2506/205 AIRCRAFT MECHANICAL TECHNOLOGY I Oct./Nov. 2023 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN AERONAUTICAL ENGINEERING (AIRFRAMES AND ENGINES OPTION)

MODULE II

AIRCRAFT MECHANICAL TECHNOLOGY I

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet:

Mathematical tables/Non-Programmable scientific calculator;

Drawing instruments;

This paper consists of EIGHT questions in TWO sections; A and B.

Answer FIVE questions in total taking at least TWO questions from each section.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

All dimensions are in millimetres unless stated otherwise.

Candidates should answer the questions in English.

This paper consists of 5 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2023 The Kenya National Examinations Council

Turn over

SECTION A: STRENGTH OF MATERIALS

Answer at least TWO questions from this section.

- 1. (a) Explain the following terms as applied to torsion and state their S.I units:
 - (i) modulus of rigidity;
 - (ii) polar second moment of area.

(6 marks)

(b) A solid circular shaft of diameter d and length L transmits power. Show that the

maximum shear stress τ induced in the shaft is given by $\tau = \frac{G\theta d}{2L}$.

Where:

G = modulus of rigidity;

 θ = angular twist.

(6 marks)

- (c) A solid stepped shaft of length 1.5 m has a diameter of 30 mm over a length of 0.8 m and a diameter of 40 mm over its remaining length of 0.7 m. The shaft transmits a power of 80 kW at a rotational speed of 1500 rev/min. If the total angular twist of the shaft is 4.7°, determine the modulus of rigidity of the material. (8 marks)
- (a) A straight elastic bar of length L is subjected to a bending moment M. Show that the strain energy \cup stored in the bar is given by $\cup = \frac{M^2L}{2EI}$.

Where EI = flexural rigidity of the bar.

(7 marks)

- (b) A cylindrical pressure vessel has a diameter of 2.4 m and a shell thickness of 4 mm. The vessel stores a gaseous fuel at a pressure of 600 kN/m². Working from first principles, determine the strain in the vessel along the:
 - (i) circumferential direction;
 - (ii) axial direction.

Take modulus of elasticity $E = 200 \, GN/m^2$.

(13 marks)

3. (a) Figure 1 shows the loading and cross section of a cantilever timber beam. The modulus of elasticity of the timber is 40 GN/m² and the maximum deflection of the beam is not to exceed 5 mm. From first principles, determine the maximum permissible uniformly distributed load which the beam can carry. (13 marks)

Fig. 1

Section X-X

- An alloy pipe has a length of 0.2 m, an internal diameter of 25 mm and a thickness (b) of 4 mm. When subjected to a compressive load P, the pipe thickness increases by 0.005 mm. The modulus of elasticity of the alloy is 160 GN/m² and Poisson's ratio is 0.28. Determine the:
 - (i) reduction in length of the pipe;
 - (ii) applied load P.

(7 marks)

- With the aid of sketches, distinguish between a spiral spring and a helical spring. 4. (a) (4 marks)
 - A close coiled helical spring carries an axial load W. Show that its angular twist θ is (b)

given by
$$\theta = \frac{16WD^2n}{Gd^4}$$
.

Where:

D = coil diameter;

n =number of coils;

G = modulus of rigidity;

d = wire diameter

(7 marks)

The following data refers to an open coiled helical spring carrying an axial load:

free length of the spring = 300 mm;

number of coils

= 5;

axial load carried

= 40 N;

rod diameter

= 10 mm;

coil diameter

= 100 mm.

Determine the:

- (i) helix angle α;
- maximum bending stress in the spring. (ii)

(9 marks)

Turn over

SECTION B: MECHANICS OF MACHINES

Answer at least TWO questions from this section.

- 5. (a) With the aid of sketches, distinguish between a simple and a compound spur gear train. (4 marks)
 - (b) A simple epicyclic gear train has a sun wheel with 50 teeth and three planet wheels each having 25 teeth. The input shaft is integral with the sun wheel and it transmits 60 kW at 300 rev/min. The annular wheel is fixed and the output shaft is integral with the planet carrier. The overall efficiency of the gear train is 80%.

 Draw a labelled diagram of the gear train and hence, determine the:
 - (i) rotational speed of the driven shaft;
 - (ii) fixing torque required for the annulus.

(16 marks)

6. (a) With the aid of a labelled diagram, describe the construction of a cone clutch.

(6 marks)

(b) Assuming uniform pressure over the friction surfaces, show that the torque T, transmitted by a plate clutch is given by:

$$T = \frac{2}{3} \mu W \frac{(r_2^3 - r_1^3)}{(r_2^2 - r_1^2)}.$$

Where:

 r_2r_1 = outside and inside radii of the friction surfaces;

 μ = coefficient of friction;

W =axial spring load.

(9 marks)

(c) The following data refers to a place clutch assembly:

outside diameter of friction ring = 320 mm; inside diameter of friction ring = 160 mm; coefficient of friction $\mu = 0.45$; number of pairs of friction surfaces = 2; axial spring load pressing the surfaces = 1.5 kN; rotational speed = 1800 rev/min.

Assuming uniform pressure, determine the power transmitted by the assembly.

(5 marks)

7. A shaft of length 6 m carries three eccentric pulleys A, B and C. Pulley A is fitted at one end of the shaft, pulley C is at the other end and pulley B is located 2 m away from A. Table I shows the masses, eccentricities and angular dispositions of the pulleys.

Table I

Pulley	A	В	C
Mass m (kg)	2.0	1.0	0.5
Eccentricity r (mm)	200	200	200
Angular position (°)	0	60	120

In order to restore complete dynamic balance, a mass P is to be fitted midway between the planes of A and B and a second balance mass Q is to be fitted midway between the planes of B and C. Both balance masses are to be fixed at an eccentricity of 200 mm.

Determine the required magnitude and angular disposition of:

- (a) mass Q; (11 marks)
- (b) mass P. (9 marks)
- 8. (a) (i) Explain the term linear momentum and state its S.I units.
 - (ii) Show that for a body moving linearly, the accelerating force F equals the rate of change of its linear momentum.

(7 marks)

- (b) The flywheel of an engine has a moment of inertia of 5 kgm². The flywheel accelerates from rest to a speed of 3000 rev/min in 380 revolutions. If the friction torque at the bearings is 3.25 Nm, determine the:
 - (i) angular acceleration;
 - (ii) time taken;
 - (iii) accelerating torque.

(10 marks)

(c) A light aircraft has a propeller of mass 50 kg and a radius of gyration of 1800 mm.

Determine angular momentum of the propeller at an instant when it rotates at 300 rev/min. (3 marks)

THIS IS THE LAST PRINTED PAGE.