2521/303 2602/303 2601/303 2603/303

ENGINEERING MATHEMATICS III

June/July 2023 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN ELECTRICAL AND ELECTRONIC ENGINEERING (POWER OPTION) (TELECOMMUNICATION OPTION) (INSTRUMENTATION OPTION)

MODULE III

ENGINEERING MATHEMATICS III

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet:

Mathematical tables/Non-programmable scientific calculator.

This paper consists of EIGHT questions.

Answer any FIVE questions in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 4 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

- 1. (a) Given that $f(z) = e^{z+1}$ where z = x + jy,
 - (i) express f(z) in the form the u+jv
 - (ii) show that u and v satisfy Cauchy-Riemann equations. (6 marks)
 - (b) Given that $u(x,y) = xy^3 x^3y$;
 - (i) Show that u(x,y) is harmonic.
 - (ii) determine its conjugate harmonic function v(x,y) such that f(z) = u(x,y) + jv(x,y) is analytic. (7 marks)
 - (c) Given that $w = f(z) = \frac{1}{w}$ is a transformation. Determine the centre and radius of the image if $\left|z \frac{1}{2}\right| = 1$. (7 marks)
- 2. (a) Given that $A = \begin{bmatrix} -4 & 2 \\ 2 & -4 \end{bmatrix}$.

Determine the:

- (i) eigenvalues of A;
- (ii) corresponding eigenvectors of A.

(10 marks)

(b) A linear time variant system is described by the differential equations.

$$\frac{di_1}{dt} = 2i_1$$

$$di_2 = 2i_1$$

- $\frac{di_2}{dt} = -3i_2$
- (i) Express the system in the form $\frac{dI}{d\tilde{t}} = C\tilde{i}$ where $\tilde{I} = [i_1 i_2]^T$.
- (ii) Determine the state transition matrix $\phi(t)$ of (b)(i). (10 marks)
- 3. (a) Given that $F = 3x^2i + 2xzj + zk$. Determine the work done in moving a particle in the force field F along a space curve C: $x = 2t^2$, y = t, $z = 4t^2 t$ from t = 0 to t = 1. (5 marks)
 - (b) (i) Show that $F = y^2 \cos x i + 2y \sin x j$ is a conservative field.
 - (ii) Hence find the scalar potential $\phi(x,y)$ in (b)(i) above. (8 marks)
 - (c) Use Green's theorem to evaluate $\oint_c \left[-y^3 dx + x^3 dy \right]$ where c is the boundary of the region bounded by x-axis and the upper-half of the circle $x^2 + y^2 = 1$. (7 marks)

- 4. (a) Given that x_n is an approximation to the root of the equation $x^3 + 5x^2 28 = 0$.
 - (i) Use the Newton-Raphson method to show that a better approximation to the root is given by:

$$x_{n+1} = \frac{2x_n^3 + 5x_n^2 + 28}{3x_n^2 + 10x_n}$$

- (ii) By using $x_0 = 1$, determine the root of the equation to four decimal places. (8 marks)
- (b) Table 1 represents a cubic polynomial f(x).

Table 1

\boldsymbol{x}	0	1	2	3	4	5
f(x)	4	9	32	85	180	329

Using Newton-Gregory interpolation formulae, determine:

- (i) f(0.5)
- (ii) f(4.5)

Correct to three decimal places.

(12 marks)

- 5. (a) Evaluate the double integral $\iint_R xydydx$ where R is the region enclosed by the ellipse $9x^2 + 4y^2 = 36$ in the first octant. (6 marks)
 - (b) (i) Sketch the region bounded by $y = 3x x^2$ and y = x.
 - (ii) Determine the area between the curves in (b)(i) by double integration.

(8 marks)

(c) Determine the volume in the first octant bounded by the cylinder $x = 4 - y^2$ and the planes z = y, x = 0, z = 0 by triple integration. (6 marks)

6. (a) The voltage across a capacitor varies with time t as shown in Figure 1.

Fig. 1

- (i) Give an analytical description of v(t).
- (ii) Sketch the odd extension of v(t).
- (iii) Hence, determine the Fourier sine series of v(t). (11 marks)
- (b) A periodic function h(x) is defined by:

$$h(x) = \begin{cases} -1, & -2 \le x \le 0 \\ x, & 0 \le x \le 2 \\ h(x+4) \end{cases}$$

Determine the Fourier series of h(x).

(9 marks)

- 7. (a) Evaluate $\iint_S \underline{A} \cdot \hat{n} ds$ where $\underline{A} = xy\underline{i} y^2\underline{j} + z\underline{k}$ and S is the portion of the plane x + y + z = 1 included in the first octant. (6 marks)
 - (b) Verify Stoke's theorem for $\underline{A} = 2y\underline{i} + 3x\underline{j} z^2\underline{k}$ where S is the upper-half surface of the sphere $x^2 + y^2 + z^2 = 9$ and C is its boundary. (14 marks)
- 8. (a) A 2 x 2 matrix M has eigenvalues of $\lambda_1 = -2$ and $\lambda_2 = 7$ with respective eigenvectors of $v_1 = [1-1]^T$ and $v_2 = [4 5]^T$. Determine the matrix M. (10 marks)
 - (b) Sketch the even extension of the function f(t) = 1 + t, 0 < t < 1 on (-1, 1) and determine its Fourier cosine series.
 - (ii) By setting t = 0, in (b)(i), show that $\frac{\pi^2}{8} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$. (10 marks)

THIS IS THE LAST PRINTED PAGE.

2521/303 2602/303 2601/303 2603/303 June/July 2023

4