2506/303 2507/303 ENGINEERING MATHEMATICS III June/July 2023 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN AERONAUTICAL ENGINEERING (AIRFRAMES AND ENGINES OPTION) (AVIONICS OPTION)

MODULE III

ENGINEERING MATHEMATICS III

56

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet;

Mathematical tables/Non-programmable scientific calculator;

Drawing instruments.

This paper consists of EIGHT questions

Answer any FIVE questions in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 4 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

Turn over

- 1. (a) A 2×2 matrix A has eigenvalues $\lambda_1 = 5$ and $\lambda_2 = 3$ with corresponding eigenvectors $\begin{bmatrix} 1 & 2 \end{bmatrix}^T$ and $\begin{bmatrix} 1 & 3 \end{bmatrix}^T$ respectively. Determine the:
 - (i) Modal matrix M and spectral matrix S;
 - (ii) Matrix A.

(10 marks)

(b) A Linear-time invariant system is modelled by the vector-matrix differential equation.

$$\frac{dx}{d\tilde{t}} = Ax$$
 where $A = \begin{bmatrix} 0 & 1 \\ -3 & -4 \end{bmatrix}$ and $x(t)$ is the system state vector.

Determine the system state transition matrix, $\Phi(t)$.

(10 marks)

- 2. (a) Find the half-range Fourier cosine series of the function $f(t) = 4 \frac{t}{\pi}$, $0 \le t \le \pi$. (8 marks)
 - (b) The current i(t) in a capacitive circuit is given by

$$i(t) = \begin{cases} 0 & -\pi \le t \le 0 \\ \pi - t & 0 \le t \le \pi \\ i(t + 2\pi) & \end{cases}$$

Determine the fourier series representation of i(t).

(12 marks)

3. (a) Use the Newton Raphson method to solve the equation $5x^3 + 7x^2 - 6x + 3$ near x = 3.3 correct to six decimal places.

(11 marks)

(b) Table 1 represents a cubic polynomial f(x) and an error is suspected in one of the entries.

Table 1

		1									
f(x)	5	11	27	45	113	195	311	467	669	923	1235

- (i) Use a table of finite differences to locate and correct the error.
- (ii) Use the Newton-Gregory forward difference interpolation formula to determine f(3.4).

(9 marks)

- 4. (a) Given that $f(z) = x^2 ay^2 2x + 4 + j(bxy 2y)$
 - (i) determine the values of a and b such that f(z) is analytic.
 - (ii) express both f(z) and f'(z) in terms of the complex variable z = x + jy; (7 marks)
 - (b) Given that $u = \ln(x^2 + y^2)$
 - (i) show that u is harmonic.
 - (ii) determine the harmonic conjugate function v such that f(z) = u + jv is analytic. (8 marks)
 - (c) Determine the image in the w-plane of the circle |z|=2 under the transformation $w=\frac{1}{z}\,. \tag{5 marks}$
- 5. (a) Evaluate $\iint_R \frac{dydx}{\sqrt{1-2x^2-y^2}}$ where R is the part of the ellipse $2x^2+y^2=1$ and lying in the first quadrant. (6 marks)
 - (b) Change the order of integration and hence evaluate $\int_{0}^{\infty} \int_{0}^{x} x e^{-x^{2}/x} dy dx.$ (6 marks)
 - (c) Use triple integral to determine the volume bounded by the cylinder $x^2 + y^2 = 4$ and the plane y + z = 4 and z = 0. (8 marks)
 - 6. (a) Verify the stroke's theorem for the vector field $F = (x^2 + y 4) \underline{i} + 3xy\underline{i} + (2xz z^2)\underline{k}$ and S is the upper hemisphere $x^2 + y^2 + z^2 = 16$, $z \ge 0$. (13 marks)
 - (b) Find the surface area of the cylinder $x^2 + z^2 = 4$ inside the cylinder $x^2 + y^2 = 4$. (7 marks)

- 7. (a) Use the Divergence theorem to evaluate $\int_s F.ds$ where $f = x^3 i + y^3 i + z^3 k$ and $f = x^3 i + y^3 i + z^3 k$ an
 - (b) Use Green's theorem in the plane to evaluate the line integral $\oint_c (e^{x^2} + y^3 + 3) dx + (e^{y^2} + x^3 + 6y) dy \text{ where c is the boundary of the circle}$ $x^2 + y^2 = 1 \text{ with counterclockwise orientation.}$ (9 marks)
- 8. (a) Obtain the half-range Fourier cosine series of the function, $f(t)=t-t^2\,,\ 0\leq t\leq\pi\,. \eqno(10 \text{ marks})$
- (b) Given the matrix $A = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}$; determine a generalised modal matrix M such that $J = M^{-1}AM$, where J is the jorden canonical form of A. (10 marks)

THIS IS THE LAST PRINTED PAGE.