2506/203 2507/203 ENGINEERING MATHEMATICS II June/July 2023 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN AERONAUTICAL ENGINEERING (AIRFRAMES AND ENGINES OPTION) (AVIONICS OPTION)

MODULE II

ENGINEERING MATHEMATICS II

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet;

Mathematical tables/Non-programmable scientific calculator.

Answer any FIVE of the following EIGHT questions.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 4 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

©2023 The Kenya National Examinations Council

Turn over

1. (a) Given the matrix
$$A = \begin{bmatrix} 1 & -2 & -1 \\ -1 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix}$$
, show that $A^{-1}A^2 = A$. (12 marks)

(b) Three currents I_1 , I_2 and I_3 in amperes flowing in an electric network satisfy the simultaneous equations:

$$I_1 - 2I_2 + 2I_3 = 1$$

 $I_1 + I_2 - I_3 = 4$
 $-2I_1 + 2I_2 + I_3 = -1$

Use Cramer's rule to solve the equations.

(8 marks)

- 2. (a) Determine the Laplace transform of $f(t) = te^{-t} \sin t$ from first principles. (8 marks)
 - (b) The charge, q(t) in an a.c circuit satisfies the differential equation

$$2\frac{d^2q}{dt^2} + 5\frac{dq}{dt} + 3q = \sin t$$
. Use Laplace transforms to determine an expression for $q(t)$, given that $t = 0$, $q = 1$ and $\frac{dq}{dt} = 1$. (12 marks)

- 3. (a) Determine the first three non-zero terms in the Maclaurin series expansion of $f(x) = Sin(x + \frac{\pi}{2})$.
 - (ii) Use the result in (i) to evaluate the integral $\int_0^1 \frac{Sin(x+\frac{\pi}{2})}{x^{\frac{1}{3}}} dx$. (10 marks)
 - (b) (i) Expand $\tan(\frac{\pi}{4} + h)$ in Taylor series as far as the term in h^3 .
 - (ii) Hence, determine the value of tan $46\frac{1}{2}^{\circ}$; correct to three decimal places. (10 marks)

- 4. (a) Given the vectors $\underline{A} = 3\underline{i} + 6\underline{j} \underline{k}$ and $\underline{B} = \underline{i} 2\underline{j} + 2\underline{k}$, determine:
 - (i) a unit vector perpendicular to A and B;
 - (ii) the angle between A and B.

(11 marks)

- (b) An electrical scalar potential $V = x^2yz^2$ exists in a region of space. Determine, at the point (-1, 1, 3):
 - (i) ∇V ;
 - (ii) $\nabla . \nabla V$.

(9 marks)

5. (a) Obtain the general solution of the differential equation

$$\left(\frac{y^2}{x} + 2x\right)dx + \left(2y\ln x + 1\right)dy = 0. \tag{9 marks}$$

(b) A linear time-invariant system is characterized by the differential equation

$$\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 10x = Cos t.$$

Use the D-operator method to determine an expression for x(t). (11 marks)

- 6. (a) Given $u = x^2 \tan^{-1} \left(\frac{y}{x} \right)$, show that $x \frac{du}{dx} + y \frac{du}{dy} = 2u$. (8 marks)
 - (b) The radius of a cylinder is reduced by 2% while its height is increased by 3%. Use partial differentiation to determine the percentage change in the volume of the cylinder.

 (4 marks)
 - (c) Locate the stationary points of the function $z = x^3 6y^2 + 12xy$ and determine their nature. (8 marks)

- 7. (a) Show that the general solution of the differential equation $xy \frac{dy}{dx} = x^2 + 2y^2$ may be expressed in the form $x^4 = c(x^2 + y^2)$ where c is an arbitrary constant. (9 marks)
 - (b) Use the method of undetermined coefficients to determine the general solution of the differential equation $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = x^2$. (11 marks)
- 8. (a) The probability of winning a game is 10% and 10 games are played independently.

 Determine the probability that a game will be won at least once. (5 marks)
 - (b) Table 1 shows data obtained by measuring length of a line by a group of students.

Table 1

Length of a line (cm)	8.60	8.59	8.58	8.57	8.56	8.55	8.53	8.52
Frequency	2	3	4	9	10	8	1	1

Given an assumed mean of 8.56. Determine the:

- (i) mean;
- (ii) standard deviation;
- (iii) variance and;
- (iv) fit a normal curve to the data provided.

(15 marks)

THIS IS THE LAST PRINTED PAGE.