2506/202 2507/202 ELECTRONICS AND CONTROL SYSTEMS June/July 2023

Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN AERONAUTICAL ENGINEERING (AIRFRAMES AND ENGINES OPTION) (AVIONICS OPTION)

MODULE II

ELECTRONICS AND CONTROL SYSTEMS

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet;

Mathematical tables / Non-programmable scientific calculator;

Log-linear graph paper;

Drawing instruments.

This paper consists EIGHT questions in TWO sections; A and B.

Answer THREE questions from section A and TWO questions from section B in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 8 printed pages and 1 insert.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2023 The Kenya National Examinations Council

Turn over

SECTION A: ELECTRONICS

Answer THREE questions from this section.

1.	(a)	Perfor	m each of the following number system conversions:		
		(i)	(827) ₁₀ into:		
			(I) 8421 BCD; (II) 5211 BCD.		
		(ii)	(629) ₁₀ into:		
			(I) Octal; (II) Binary; (III) Hexadecimal.	(10 marks)	
	(b)	Perfo	rm each of the following operations:		
		(i)	$(110011)_2 \times (101101)_2$		
		(ii)	$(17)_{10}$ - $(169)_{10}$ in two's complement using 9-bits. Leave the result	in binary. (6 marks)	
	(c)		f-subtractor consists of two inputs, A and B and two outputs D and Botable for the circuit.	Draw the (4 marks)	
2.	(a)	Defin	ne each of the following with respect to atomic structure of elements:		
		(i) (ii)	covalent bond; energy band.	(2 marks)	
	(b)	With	aid of an energy-level diagram, explain a p-type semiconductor.	(5 marks)	
	(c)	A sample of silicon is made N-type by addition of pentavalent atoms at a rate of 1 atom per 8×10^6 silicon atoms. The intrinsic carrier concentration in silicon is, $n_i = 4\times10^{16}/m^3$ and the number of silicon atoms per unit volume is $22\times10^{28}/m^3$. Determine the:			
		(i) (ii) (ii)	concentration of donor atoms; concentration of electrons in the conduction band; concentration of holes in the valency band.	(6 marks	
				(O Illaiks	

2506/202 2507/202 June/July 2023

	(d)	(i)	Draw the V-I characteristic curve of a unijunction transistor (UJT) are three distinct regions.	nd label the
		(ii)	State two applications of UJT.	(7 marks)
3.	(a)	Defin	e each of the following with respect to flip-flops:	
		(i)	set-up time;	
		(ii)	hold time.	(2 marks)
	(b)	(i)	Draw the truth table for SR-flip flop.	
		(ii)	Draw the logic circuit diagram of a JK-flip flip, made from SR-flip fligates.	op and
			Ballot.	(6 marks)
	(c)	For a	modulo-12 Asynchronous up counter:	
		(i)	Draw the counting sequence;	
		(ii)	Determine the number of JK flip flops required;	
		(iii)	Draw the schematic block diagram of the counter.	(9 marks)
	(d)	A 4K	\times 8 memory is made from 2K \times 4 memory chips. Determine the:	
		(i)	number of 2K × 4 chips required.	
		(ii)	size of decoder required for the memory implementation.	(3 marks)
4.	(a)	Defin	ne each of the following with respect to PN-diode:	
		(i) (ii)	Depletion region; peak-inverse voltage (PIV).	
		(11)	F	(2 marks)

(b) Figure 1 shows a circuit diagram of a half-wave diode rectifier supplied from 220 V, 50 Hz through a step-down transformer of turns ratio 20:1. The load of resistor, $RL = 500 \ \Omega$.

. .e. .

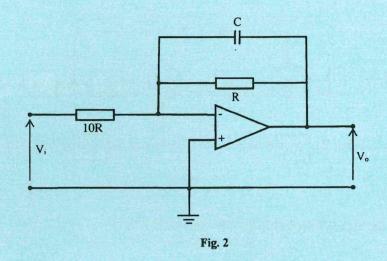
Assuming the diode is ideal, determine the:

- (i) dc voltage across the load;
- (ii) average output load power;
- (iii) PIV of the diode;
- (iv) ripple factor.

(8 marks)

(c) State two limitations of half-wave rectifiers.

(2 marks)


- (d) (i) Draw the V-I characteristics of a TRIAC and explain its operation.
 - (ii) State two areas of application of TRIAC.

(8 marks)

- 5. (a) Define each of the following with respect to OP-Amps:
 - (i) slew rate;
 - (ii) input offset voltage;
 - (iii) common-mode rejection ratio.

(3 marks)

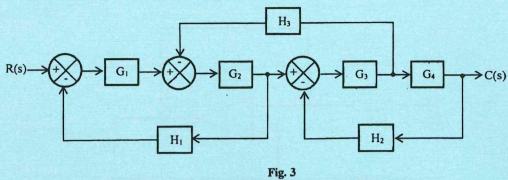
(b) Figure 2 shows a diagram of an OP-Amp based circuit.

- (i) Derive the expression for the gain, $\frac{V_o}{V_i}$.
- (ii) Sketch the variation of gain with frequency.

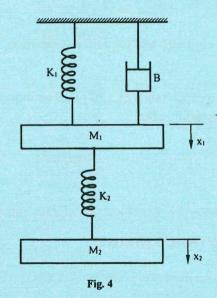
(7 marks)

- (c) Draw a circuit diagram of a Colpitts oscillator and explain its operation. (6 marks)
- (d) A Hartley Oscillator tank circuit has a capacitance of 150 pF. The inductances are $L_1 = 2000~\mu$ H and $L_2 = 200~\mu$ H. Determine the:
 - (i) effective oscillator inductance;
 - (ii) frequency of oscillation.

(4 marks)


SECTION B: CONTROL SYSTEMS

Answer TWO questions from this section.


- 6. (a) Define each of the following with respect to control systems:
 - (i) stimulus;
 - (ii) plant;
 - (iii) disturbance.

(3 marks)

(b) Figure 3 shows a block diagram of a control system.

- Tig. 5
- (i) Draw the signal flow graph for the system.
- (ii) Using Mason's gain formula, determine the transfer function, $\frac{C_{(s)}}{R_{(s)}}$. (11 marks)
- (c) Figure 4 shows a mass-spring system.

- (i) Write the differential equation to describe the system.
- (ii) Draw a circuit diagram for the force-voltage analogy for the system. (6 marks)

- 7. (a) (i) Describe the Routh-Hurwitz stability criterion.
 - (ii) The characteristic equation of a control system is given by:

$$D_{(s)} = 2s^3 + 6s^2 + 6s + K + 1 = 0$$
.

Determine the range of K for which the system is stable.

(12 marks)

(b) A closed-loop servo system is represented by the differential equation:

$$\frac{d^2\theta}{dt^2} + 8\frac{d\theta}{dr} = 64e$$

where e is the displacement of the output shaft and r is the displacement of the input shaft. Where $e = r - \theta$. Determine the:

- (i) undamped natural frequency;
- (ii) percentage maximum overshoot for a step input.

(8 marks)

- 8. (a) Define each of the following with respect to control system stability:
 - (i) gain margin;
 - (ii) phase margin.

(2 marks)

(b) An open-loop transfer function of a unity feedback control system is given by:

$$G(s) = \frac{80}{(2+s)(4+s)(10+s)}$$

- (i) Determine the corner frequencies.
- (ii) Table 1 shows the phase angles at selected frequencies.

Freq (ω) rad/s	0.1	0.5	1.0	2.0	4.0	5.0	8.0	9.0	20	50
Phase angle (°)	-4.87	-24.03	_1	-82.9	-130	-146	-175	_	-226	-252

Determine the phase angles at frequencies $\omega = 1.0$ and 9 rad/s respectively.

(iii) Plot the Bode diagram, using asymptotic approximations for gain.

(iv) From the Bode diagram, determine the phase margin of the system.

(12 marks)

(c) A control system is represented by the following simultaneous equations:

$$\dot{y} + 4y + x = 3$$

$$\dot{x} + 3x - y = 7$$

Draw an analogue computer flow diagram for simulating the control system.

(6 marks)

THIS IS THE LAST PRINTED PAGE.

2506/202 2507/202 June/July 2023