2601/201 2602/201 2603/201 CONTROL SYSTEMS AND PROGRAMMABLE LOGIC CONTROLLERS June/July 2023 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN ELECTRICAL AND ELECTRONIC ENGINEERING (POWER OPTION) (TELECOMMUNICATION OPTION) (INSTRUMENTATION OPTION)

MODULE II

CONTROL SYSTEMS AND PROGRAMMABLE LOGIC CONTROLLERS

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet:

Non-programmable scientific calculator;

Drawing instruments:

Polar curve.

This paper consists of EIGHT questions in TWO sections; A and B.

Answer any THREE questions from section A and any TWO questions from section B in the answer booklet provided.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 8 printed pages and one insert.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2023 The Kenya National Examinations Council

Turn over

SECTION A: CONTROL SYSTEMS

Answer any THREE questions from this section.

1. (a) Figure 1 shows a closed loop control system. Using block diagram manipulation determine the transfer function. (10 marks)

Fig. 1

(b) Figure 2 shows an electrical network. Determine it's transfer function $\frac{V_{out}(t)}{V_{in}(t)}$

(10 marks)

Fig. 2

- 2. (a) Write down the equivalent Force-current electrical analogy for each of the following mechanical quantities:
 - (i) velocity;
 - (ii) spring constant;
 - (iii) mass.

(3 marks)

- (b) A servomechanism is represented by the equation $\frac{d^2\theta}{dt^2} + 10\frac{d\theta}{dt} = 150E$. Where, $E = (r \theta)$, r is the reference input and θ is the output shaft position. For the system, determine the:
 - (i) undamped natural frequency;
 - (ii) damping ratio;
 - (iii) damped frequency of oscillations.

(8 marks)

(c) Figure 3 is a unity feedback control system. Show that the damping factor is given by $\frac{T_1+T_2}{\sqrt[2]{(1+x)T_1T_2}}.$ (9 marks)

Fig. 3

- 3. (a) (i) Draw a three-input OP-AMP based electronic summer.
 - (ii) Derive the expression for output voltage for the summer in (a)(i).

(7 marks)

- (b) State **three** factors that affect the accuracy of an analogue computer simulation.
- (c) The charge q on a capacitor in RLC circuit is given by $100 = 5 \frac{dq}{dt} + \frac{1}{10^3} \frac{d^2q}{dt^2} + \frac{10^6}{50} q$. Given that $q = \frac{dq}{dt} = 0$ at t = 0 and the scaled variables are $|q|_{max} = 10^{-2}$ units and $\left|\frac{dq}{dt}\right|_{max} = 25$ units. Employing time scaling such that "computer time" is 5000 times "real time" derive a time scaled flow diagram. (10 marks)

2601/201 2602/201 2603/201 June / July 2023 4. (a) State the Nyquist stability criterion.

(2 marks)

(b) Table 1 shows the open loop frequency response of a servo mechanism.

Table 1

W(rad/sec)	2	3	4	5	6	8	10	30
Gain	2.8	1.9	1.3	0.9	0.68	0.4	0.26	0.12
Phase angle (°)	-120	-130	-140	-149	-157	-170	-180	-200

- (i) Construct it's polar plot.
- (ii) Determine the:
 - (I) gain margin;
 - (II) phase margin;
 - (III) phase cross over frequency;
 - (IV) phase crossover frequency;
 - (V) stability.

(8 marks)

(c) Figure 4 shows a signal flow graph. Using Mason's gain formular, determine the closed loop transfer function.

Fig. 4

(10 marks)

5. (a) State three advantages of bode plots over nyquist stability diagrams.

(3 marks)

(b) A negative unity feedback system has an open-loop transfer function of:

$$G(s) = \frac{k}{s^4 + 2s^3 + 6s^2 + 10s}$$
.

- (i) Determine the characteristic equation of the system;
- (ii) Use Routh Hurwitz method to determine the range of values of k for which the system is stable;
- (iii) Given that k = 5, calculate the value of the oscillating frequency for self oscillations.

(9 marks)

- (c) A stepper motor wired for a four sequence is fed from a pulse train of 500 Hz frequency. The number of rotor teeth is 180. Determine:
 - (i) the steps per revolution;
 - (ii) step angle;
 - (iii) rotor speed (revolutions per minutes) in radians per seconds.

(8 marks)

SECTION B: PROGRAMMABLE LOGIC CONTROLLERS

Answer any TWO questions from this section.

- 6. (a) (i) State three factors that make programmable logic controllers more suitable for industrial control over convectional computers.
 - (ii) List four contents of documentation guide for PLC installation.

(7 marks)

- (b) Describe each of the following PLC programming language citing an example in each case:
 - (i) structured text;
 - (ii) sequential function chart.

(6 marks)

(c) Figure 5 shows a ladder diagram program of a PLC. Translate the ladder program into it's instruction list program. (7 marks)

Fig. 5

- 7. (a) (i) State three main elements of a SCADA system.
 - (ii) Differentiate between logging and archiving as used in SCADA systems. (7 marks)

(b) With the aid of a labelled block diagram, describe the operation of a distributed SCADA system. (7 marks)

- (c) State three:
 - (i) merits of calibration software;
 - (ii) parameters that two network adaptor cards (NACs) must agree on during data transfer.

(6 marks)

- 8. (a) With the aid of labelled diagram, describe parts of a coaxial cable used in an industrial network. (6 marks)
 - (b) Describe the functions of three networking hardware devices that are used to implement a computer network. (6 marks)
 - (c) A digital control system has two inputs A and B and two outputs X and Y. The relationship between the outputs and inputs is as follows:
 - output Y indicates presence or absence of both inputs;
 - output X indicates presence of either inputs.
 - (i) Draw a truth table to represent these functions;
 - (ii) Write down the Boolean expressions for the functions in (c)(i);
 - (iii) Draw the ladder diagram for the system.

(8 marks)

POLAR CURVE

THIS IS THE LAST PRINTED PAGE

2601/201 2602/201 2603/201 June / July 2023

NAME:	••••••	INDEX NO	
NAIVIL;	•••••••	INDEA NO	•••

POLAR CURVE

2601/201 2602/201 2603/201

June / July 2023