2507/201 AIRCRAFT INSTRUMENTS AND MEASUREMENT SYSTEMS June/July 2023 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN AERONAUTICAL ENGINEERING (AVIONICS OPTION)

MODULE II

AIRCRAFT INSTRUMENTS AND MEASUREMENT SYSTEMS

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet:

Drawing instruments;

Mathematical tables/Non-programmable scientific calculator.

This paper consists of EIGHT questions.

Answer FIVE of the EIGHT questions in the answer booklet.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 3 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2023 The Kenya National Examinations Council

Turn over

1.	(a)	hysteresis loop.	ned from the (8 marks
	(b)	With the aid of a labelled schematic diagram, describe the construction and a simple Shunt type Ohmeter.	operation of (12 marks
2	(a)	Outline the circumstances under which an aircraft with inoperative instrume operated.	ent may be (7 marks
	(b)	Outline the minimum flight and navigational instruments an operator shall raeroplane under IFR.	not fly an (13 marks
3.	(a)	With reference to aircraft flight instruments bench check regulations, outline the requirements for each of the following:	
		(i) ratings;	(2 marks)
		(ii) servicing.	(4 marks)
	(b)	With the aid of a labelled sketch, describe the construction and principle of an inertial navigation system.	operation of (14 marks)
4.	(a)	With the aid of a labelled sketch, explain the use of a spherical concave mirridesign of Schmidt Cassegrain telescope.	or in the (10 marks)
	(b)	Describe the application of astronomical instruments.	(10 marks)
5.	With ref	ference to central maintenance computing and fault diagnostic tools, describe ng:	each of the
	(a)	fault isolation manual;	(4 marks)
	(b)	BITE;	(8 marks)
	(c)	faults isolation.	(8 marks)
6	(a)	With the aid of a labelled block diagram, explain the layout of a ground prox warning system.	imity (9 marks)
	(b)	Outline ten reasons for carrying out compass swing.	(5 marks)
	(c)	Explain three errors due to calibration of a sensitive altimeter.	(6 marks)

- 7. (a) With the aid of a labelled block diagram, show a typical digital flight data recording system (DFDR). (10 marks)
 - (b) Highlight four ways of operating a typical flight data recorder. (4 marks)
 - (c) Outline six reasons for the calibration of digital flight data recorders. (6 marks)
- 8. With reference to equipment reliability, discuss five major causes of equipment failure.

(20 marks)

THIS IS THE LAST PRINTED PAGE.