2506/102 2507/102 AIRCRAFT ELECTRICAL TECHNOLOGY June/July 2023 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN AERONAUTICAL ENGINEERING (AIRFRAMES AND ENGINES OPTION) (AVIONICS OPTION)

MODULE I

AIRCRAFT ELECTRICAL TECHNOLOGY

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet;

Non programmable scientific calculator;

Drawing instruments.

This paper consists of EIGHT questions in TWO sections; A and B.

Answer any THREE questions from section A and TWO questions from section B in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

Take permittivity of free space: $\varepsilon_0 = 8.854 \times 10^{-12}$ F/m and

Permeability of free space:

 $\mu_0 = 4\pi \times 10^{-7} \ H/m.$

This paper consists of 7 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2023 The Kenya National Examinations Council

Turn over

SECTION A: AIRCRAFT ELECTRICAL INSTALLATION TECHNOLOGY

Answer THREE questions from this section.

1.	(a)	(i)	Distinguish between arc-flash and arc-blast with reference to aircraft el safety hazards.	ectrical
		(ii)	Explain the dangers posed by each of the following to aircrafts:	
	* #3		(I) birds;	
ų			(II) mobile phones.	(6 marks)
	(b)	Descri	be Ram Air Turbine (RAT) aircraft power source.	(6 marks)
	(c)	With a	iid of a labelled diagram, describe an aircraft split-bus power distribution	n system. (8 marks)
2.	(a)	State t	two aircraft electrical installation hand tools.	(2 marks)
	(b)	Descri	be each of the following aircraft lights:	
		(i)	taxi;	
		(ii)	anti-collision.	(6 marks)
	(c)	(i)	Distinguish between luminous flux and luminous intensity with respectillumination.	t to
		(ii)	A cabin crew room measuring $16 \text{ m} \times 10 \text{ m}$ is illuminated to a level of using a number of lamps with 3,000 lumens each. The utilization and maintenance factors of the lamps are 0.74 and 0.8 respectively.	200 lux
			Determine the total:	in an analysis of the second
			(I) lumens required in the room;	
			(II) lumens given by the lamps;	
			(III) number of lamps required.	(8 marks)

2506/102 2507/102 June/July 2023

(d)	Draw electrical symbols for each of the following:					
	(i) antenna;					
	(ii) electrolytic capacitor.	(4 marks)				
(a)	State three:					
	(i) benefits of structured cabling;	~				
	(ii) types of cables used in structured cabling.					
		(6 marks)				
(b)	Draw wiring diagram of a three-point lamp control using two, 2-way switches and or intermediate switch. (6 mar					
(c)	With aid of a diagram, describe the operation of a magnetic tripping circuit bre	aker. (8 marks)				
(a)	Describe each of the following aircraft electrical diagrams:					
	(i) wiring;					
	(ii) block					

- (b) Explain how precipitation static charges are developed in an aircraft.
- (3 marks)

(4 marks)

(c) (i) Figure 1 shows a crimping terminal connector lug. Identify the parts labelled 1, 2 and 3.

Flg. 1

(ii) State three merits of the cable termination method in c (i).

(6 marks)

3.

4.

(d) Figure 2 shows a circuit diagram of a thermo couple fire warning system used in aircrafts.

Flg. 2

- (i) Identify the parts labelled X and Y;
- (ii) describe its operation.

(7 marks)

- 5. (a) Describe the two methods of installing conduits in electrical installations. (6 marks)
 - (b) With aid of a labelled diagram, describe the protective multiple earthing (PME) system. (6 marks)
 - (c) (i) With aid of a labelled diagram, describe the operation of an ionization smoke detector used in aircrafts.
 - $\mbox{(ii)} \qquad \mbox{State two merits of photoelectric smoke detectors.}$

(8 marks)

SECTION B: ELECTRICAL ENGINEERING PRINCIPLES

Answer TWO questions from this section.

- 6. (a) (i) Define each of the following electrical quantities:
 - (I) voltage;
 - (II) power.
 - (ii) A 0.24 m long copper cable carries a current of 1200 A. The potential difference between the two ends of the cable is 1.6×10^{-2} V . The resistivity of copper is $1.72\times10^{-8}~\Omega$ m .

Determine the:

- (I) resistance of the cable;
- (II) diameter of the cable.

(8 marks)

(b) Figure 3 shows four cells connected in parallel across a 10 Ω resistor.

Flg. 3

Determine the:

- (i) equivalent internal resistance;
- (ii) total current;
- (iii) current from each cell.

(6 marks)

2506/102 - 2507/102 June/July 2023

(c) A moving iron instrument reads correctly a 250 V d.c. The instrument has a coil of resistance 500 Ω and inductance 1 H. A resistor of 200 Ω is connected in series with the instrument.

Determine the:

- (i) full-scale deflection d.c current;
- (ii) a.c impedance of the circuit;
- (iii) reading when 250 V, 50 Hz a.c is applied.

(6 marks)

- 7. (a) State three types of capacitors used in aircraft electrical systems.
- (3 marks)

(b) Figure 4 shows a capacitive network.

Fig. 4

Determine the:

- (i) equivalent capacitance;
- (ii) charge on the $1 \mu F$ capacitor;
- (iii) voltage across the 6 μF capacitor.

(6 marks)

2506/102 2507/102 June/July 2023						
25054 02		THIS IS THE LAST PRINTED PAGE.				
	(iii)	current flowing through the circuit at resonance.	(8 marks)			
	(ii)	Q-factor at resonance;				
	(i)	resonant frequency;				
	Deter	Determine the:				
(c)		$0~\mu H$ inductor, 8.11 ρF capacitor and 628 Ω resistor are connected . A voltage of 12 V is applied across the circuit.	in			
	(iii)	primary winding current.	(6 marks)			
	(ii)	secondary winding current;				
	(i)	secondary voltage;				
	Deter	mine the:				
(b)	secon	A single-phase transformer has 500 turns on the primary winding and 10 turns on the secondary winding. A voltage of 120 V is supplied on the primary winding and a 15 Ω resistive load is connected on the secondary winding.				
	(11)	Short-circuit.	(6 marks)			
	(i) (ii)	open circuit;				
8. (a)		ribe each of the following transformer tests:				
(d)		three factors that affect the mutual inductance between two coils.	(3 marks)			
	(III)	instantaneous varie of the finduced e.m.i after 2 seconds.	(8 marks)			
	(ii) (iii)	peak value of the induced e.m.f; instantaneous value of the induced e.m.f after 2 seconds.				
	(i)	mutual inductance of the coil;				
		ermine the:				
		sin 500t amperes is passed in the 2 mH coil.				
(c)	Two	Two coils of inductance 2 mH and 8 mH are kept close to each other. A current of				