2521/303 2601/303 2602/303 2603/303 ENGINEERING MATHEMATICS III Oct./Nov. 2022 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN ELECTRICAL AND ELECTRONIC ENGINEERING (POWER OPTION) (TELECOMMUNICATION OPTION) (INSTRUMENTATION OPTION) MODULE III

MATHEMATICS III

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet;

Mathematical tables/calculator.

Answer any FIVE of the EIGHT questions in the answer booklet provided.

All questions carry equal marks.

All necessary working must be clearly shown.

Maximum marks for each part of a question are as indicated.

Candidates should answer all questions in English.

This paper consists of 4 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2022 The Kenya National Examinations Council

Turn over

1. (a) Determine the eigenvalues and the corresponding eigenvectors of the matrix

$$A = \begin{bmatrix} 4 & 2 \\ 3 & 3 \end{bmatrix}$$
 (10 marks)

(b) A linear lime-invariant system is modelled by the vector-matrix differential equation

$$\frac{dx}{dt} = Bx \quad \text{where}$$

$$B = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$$

Determine:

(i) state transition matrix

(ii)
$$\phi(t)$$
 at $t=0$

(10 marks)

2. (a) Given that x_n is an approximation root of the equation $x^3 + \lambda x - 3 = 0$ where λ is a constant. Use Newton-Raphson method to show that a better approximation is given by

$$x_{n+1} = \frac{2x_n^3 + 3}{3x_n^2 + \lambda}$$

(ii) By taking $x_0 = 0.8$ and $x_1 = 1.0265$, determine the value of λ and hence the root of the equation.

(10 marks)

(b) The data in table 1 represents a polynomial f(x).

Table 1

x	0	1	2	3	4
f(x)	4	9	26	67	144

Use Newton-Gregory forward difference interpolation to estimate:

- (i) f(0.5)
- (ii) f(3.5).

(10 marks)

- 3. (a) Given that $U(x, y) = x^2 y^2 2y$.
 - (i) Show that u(x, y) is harmonic.
 - (ii) determine the harmonic conjugate function v(x, y) such that f(z) = u + jv is analytic.
 - (iii) find f(z) and f'(z) in terms of z

(9 marks)

(b) The circle |z|=1 is mapped onto the ω -plane under the transformation

$$w = \frac{2}{z+j}$$

Determine the:

- (i) centre;
- (ii) radius

of the image circle.

(11 marks)

4. (a) (i) Sketch the region of integration for the integral

$$\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} (x^2+y^2)^{\frac{3}{2}} dy dx$$

(ii) By changing into polar co-ordinates, evaluate the integral in (i).

(5 marks)

- (b) Verify the divergence theorem for $A = (2x-z)i + x^2yj xz^2k$ where S is the region bounded by x = 0, y = 0, z = 0, x = 1, y = 1 and z = 1. (15 marks)
- 5. (a) Evaluate the integral

$$\iiint\limits_{s} (x+2y+4z) \, dx \, dy \, dz \quad \text{where s is defined by } 1 \le x \le 2, \ -1 \le y \le 0 \text{ and } 0 \le z \le 3.$$
(9 marks)

(b) Use Green's theorem in the plane to evaluate the line integral

$$\oint [(x^2 - 2xy) dx + (x^2y + 3) dy]$$

where C is the boundary of the region bounded by $x = y^2$ and z = 2.

(11 marks)

6. (a) (i) Sketch the region of integration for the integral C^2 C^{e^2}

$$\int_0^2 \int_1^{e^x} dy dx$$

(ii) By reversing the order of intgration in (i), evaluate the integral.

(8 marks)

(b) Show that

$$\int_{(1,2)}^{(2,1)} \left[(x^2 - y^2 + x) dx - (2xy + y) dy \right]$$

is path independent and evaluate it from (1,2) to (1,1) and from (1,1) to (2,1) (12 marks)

7. (a) Determine the Fourier Cosine series of the function defined by

$$h(t) = t, 0 < t < \pi$$

(8 marks)

(b) A function is defined by

$$g(t) = \begin{cases} -t & , -1 < t < 0 \\ t & , 0 < t < 1 \\ g(t+2) & \end{cases}$$

- (i) Sketch the function in the interval -3 < t < 3
- (ii) Determine its Fourier series.

(12 marks)

8. (a) (i) Sketch the region of integration for the integral

$$\int_0^2 \int_{2-y}^{-2+y} dx dy$$

(ii) Determine the value of the integral in (i).

(6 marks)

(b) Evaluate the surface integral

$$\iint\limits_s F.ds \text{ where } F = (x+y) \, \underline{i} + (2x-z) \, \underline{j} + (y+z) \, \underline{k} \text{ and S is the plane } 3x+2y+z=6 \text{ in the first octant.}$$
 (14 marks)

THIS IS THE LAST PRINTED PAGE.