2507/206

COMMUNICATION AND TELECOMMUNICATION SYSTEMS

Oct/Nov. 2022 Time: 3 hours



## THE KENYA NATIONAL EXAMINATIONS COUNCIL

# DIPLOMA IN AERONAUTICAL ENGINEERING (AVIONICS OPTION)

# **MODULE II**

COMMUNICATION AND TELECOMMUNICATION SYSTEMS

72

#### 3 hours

## **INSTRUCTIONS TO CANDIDATES**

You should have the following for this examination:

Answer booklet;

Mathematical tables:

Non-programmable scientific calculator;

Drawing instruments.

This paper consists of EIGHT questions in TWO sections; A and B.

Answer FIVE questions by choosing any THREE questions from section A and TWO questions form section B in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

Take: Free space wave velocity,  $c = 3 \times 10^8$  m/s

Earth radius, R = 6400 km

Characteristic impedance of free space,  $Z_o = 120\pi \Omega$ 

Bolt Zamman's constant  $K = 1.38 \times 10^{-23} J/K$ 

This paper consists of 5 printed pages.



Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2022 The Kenya National Examinations Council

Turn over

# SECTION A: COMMUNICATION SYSTEMS

Answer THREE questions from this section.

- 1. (a) State three desirable characteristics of a radio transmitter. (3 marks)
  - (b) With the aid of a labelled block diagram, describe the filter method of generating single band (SSB) signals. (8 marks)
  - (c) A frequency modulator has an output voltage wave given by:  $v(t) = 16\cos\{6 \times 10^8 t + 3\sin 1250 t\}$

Determine the:

- (i) carrier signal frequency;
- (ii) modulating signal frequency;
- (iii) modulating index;
- (iv) maximum frequency deviation;
- (v) power dissipated in a  $20 \Omega$  resistor. (9 marks)
- 2. (a) State three demerits of amplitude modulation systems. (3 marks)
  - (b) Show that the power transmitted in an A.M wave is given by:

$$P_t = P_c \left(1 + \frac{m^2}{2}\right)$$

Where:

 $P_t$  = power transmitted

 $P_c$  = power of the carrier

m = modulation index (6 marks)

- (c) A carrier wave of frequency 10 MHz and peak value of 10 V is amplitude modulated by a 5 kHz sine wave of amplitude 6 V:
  - (i) Determine the:
    - I. modulation factor;
    - II. lower side band frequency;
    - III. upper side band frequency;
    - IV. draw the frequency spectrum. (8 marks)
- (d) State the three primary colours used in TV systems. (3 marks)
- 3. (a) List three roles of the Communication Authority of Kenya (C.A.K). (3 marks)
  - (b) Draw the frequency spectrum of a PAL TV system. (4 marks)



2507/206 Oct /Nov. 2022 (c) A coloured TV standard using interlaced scanning consists of 1250 lines per frame and 25 frames per second:

#### Determine the:

- (i) line scan frequency;
- (ii) field scan period;
- (iii) field scan frequency.

(7 marks)

- (d) (i) State two advantages of optic fibre cable over satellite communication.
  - (ii) An optical fibre cable is made up of glass with core and cladding refractive indices of 1.48 and 1.45 respectively:

## Determine the:

- (i) numerical aperture;
- (ii) acceptance angle.

(6 marks)

4. (a) Define each of the following with respect to RADAR systems:

72

- (i) duty cycle;
- (ii) range resolution;
- (iii) maximum unambiguous range.

(3 marks)

- (b) With the aid of a labelled diagram, describe the operation of a Continuous Wave (CW) RADAR system. (7 marks)
- (c) A RADAR system operates at 7.5 GHz with a pulse repetition frequency of 900 pulses per second. Determine the **two** lowest blind speed in, km/h. (6 marks)
- (d) Table 1 shows different frequency bands in a fixed satellite communication. Complete the table by specifying the range frequencies. (4 marks)

Table 1

| S/No. | Frequency Band | Range in GHz |
|-------|----------------|--------------|
| 1.    | C              |              |
| 2.    | K,             |              |

5. (a) State three advantages of 3G over 2G mobile technology.

(3 marks)

- (b) Describe each of the following technologies:
  - (i) 4G systems;
  - (ii) interactive TV.

(6 marks)

(c) Table 2 shows different types of cellular technologies and their corresponding generations. Complete the table. (4 marks)

Table 2

| <b>Technology Characteristics</b> | <b>Mobile Network generation</b> |
|-----------------------------------|----------------------------------|
| FDMA                              |                                  |
| TDMA                              |                                  |
| WCDMA                             |                                  |
| EDGE                              |                                  |

- (d) A GSM 1800 MHz digital cellular network has the following characteristics:
  - One way frequency range: 18020-1840 MHz
  - RF channel spacing = 200 kHz
  - Number of users per channel = 8

### Determine the:

- (i) two way channel bandwidth;
- (ii) number of R.F channels;
- (iii) total number of TDM channel.

(7 marks)

## SECTION B: TELECOMMUNICATION PRINCIPLES

Answer TWO questions from this section.

- 6. (a) Distinguish between TE and TM modes with respect to waveguide propagation. (2 marks)
  - (b) With the aid of a labelled diagram, explain the operation of a two-cavity klystron amplifier. (8 marks)
  - (c) A rectangular waveguide measures  $2 \times 3.5 \, cm$  internally and has a 12 GHz signal propagating in it. For the TE<sub>1,1</sub> mode, determine the:
    - (i) cut-off wavelength;
    - (ii) group velocity;
    - (iii) phase velocity;
    - (iv) characteristic impedance.

(10 marks)

- 7. (a) Describe each of the following types of noise in communication systems:
  - (i) shot noise;
  - (ii) flicker noise;
  - (iii) Johnson noise.

(6 marks)

2507/206 Oct JNov. 2022

4

72

72

- (b) Two resistors of  $20 \text{ k}\Omega$  and  $50 \text{ k}\Omega$  are at room temperature of 290 K. For a bandwidth of 100 kHz, determine the thermal noise voltage generated by the two resistors in :
  - (i) series;
  - (ii) parallel.

(5 marks)

(c) Draw a labelled diagram of unshield twisted pair cable.

(2 marks)

- (d) (i) State three merits of using Tropospheric Scatter radio links.
  - (ii) With the aid of a labelled diagram, describe multi-hop mode of sky wave propagation. (7 marks)
- 8. (a) Define each of the following with respect to antennas:
  - (i) beam width;
  - (ii) polarization;
  - (iii) directivity.

(3 marks)

- (b) (i) Draw a construction diagram of a Rhombic Antenna and describe its operation.
  - (ii) State three merits of the antenna in (b)(i).

(9 marks)

- (c) A television transmitting antenna mounted at a height of 120 m radiates 15 kW of power equally in all directions. A receiving antenna of height 16 m is located at the radio horizon. Taking equivalent earth's radius factor due to atmosphere condition  $K = \frac{4}{3}$  determine the maximum line of sight range for the antenna. (4 marks)
- (d) Figure 1 shows a diagram of Broadside array antenna. Describe its operation.

(4 marks)



Fig. 1

THIS IS THE LAST PRINTED PAGE.



5