2207/304
DIGITAL PRINCIPLES
AND MICROPROCESSORS
Oct./Nov. 2016
Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN AERONAUTICAL ENGINEERING (AVIONICS) (COMMUNICATION AND NAVIGATION OPTION)

DIGITAL PRINCIPLES AND MICROPROCESSORS

3 hours

INSTRUCTIONS TO CANDIDATES

You should have a scientific calculator for this examination.

Answer any FIVE of the EIGHT questions in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as shown.

Candidates should answer the questions in English.

This paper consists of 6 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

- (a) Perform each of the following number conversions:
 - (i) (1101011), into octal form;
 - (ii) (723.1275)₁₀ into binary form;
 - (iii) (EF2.B9)₁₆ into binary form.

(7 marks)

- (b) Calculate each of the following in the given bases:
 - (i) $(A94D)_{16}$ $+ (E3BF)_{16}$
 - (ii) (5674)₈
 (2745)₈

(7 marks)

- (c) Express the decimal number 8734 into:
 - (i) BCD;
 - (ii) excess -3 code;
 - (iii) ASC11.

NB: The ASCII code for 0 to be 30 H

(6 marks)

- 2. / (a)
- (i) Distinguish between positive and negative logic.
- (ii) Simplify the following using Boolean algebra:
 - (I) (A+B)(A+C);
 - (II) $ABC + A\overline{B}C + AB\overline{C} + A\overline{B}\overline{C}$
- (iii) Convert $B(A + \overline{C})$ into canonical form.

(9 marks)

- Table 1 shows a truth table for a logic function. (b)
 - (i) Write down the output as:
 - (I) sums of products;
 - (II) product of sums.
 - (ii) With the aid of a K-map, obtain a simplified function of the output.
 - Obtain the logic circuit diagram for the function of a(ii) using NAND gates only. (iii) (11 marks)

Table 1

	Inputs	Outputs			
Х	y	Z	f		
0	0	0	1		
0	0	1	1		
0	1	0	1		
0	1	1	0		
1	0	0	0		
1	0	1	0		
1	1	0	0		
1	1	1	1		

- With the aid of a block schematic diagram explain the operation of a master-slave (a) JK-flip flop. (7 marks)
- (b) (i) Draw the truth table of RS-flip flop and state its transition equation.
 - (ii) Draw a schematic block diagram, to show how a JK-flip flop is derived from an RS-flip flop and draw its truth table.

(7 marks)

- (i) (c) Draw the binary counting sequence for a decade counter.
 - (ii) Determine the number of flip-flops used to implement the counter in c(i).
 - (iii) Implement the counter in c(i) using JK-flip flops.

(6 marks)

- With the aid of a logic diagram explain the operation of a 4-bit parallel-in (i) serial-out (PISO) shift register made from D-flip flops.
 - State one application of the register in a(i). (ii)

(8 marks)

2207/304 Oct JNov. 2016 Nove = Hoole XVrey

Turn over

AT F PS. Vin XInc.

(b) A counter has a single 1-bit control input C. When C = 0, the 2-bit counter sequences through the binary code. When C = 1, it sequences through the gray code; as follows

Binary code: $00 \rightarrow 01 \rightarrow 11 \rightarrow 00 \rightarrow ...$ Gray code: $00 \rightarrow 01 \rightarrow 11 \rightarrow 10 \rightarrow 00 ...$

- (i) Draw a state diagram for the counter labelling the states by their 2-bit codes and show the transitions to the next states for each value of C.
- (ii) Draw a transition table for the counter in b(i) using JK-flip flop.
- (iii) Using K-map, derive minimised equations for the counter.

(12 marks)

- 5. (a) (i) Draw a truth table of a binary full subtractor.
 - (ii) Using a 4-to-1 multiplexer, implement the subtractor in a(i).

(10 marks)

- (b) (i) Draw a truth table for a 3-bit even parity generator.
 - (ii) Implement the circuit in b(i) using 3-to-8 decoder and OR-gate.

(6 marks)

- (c) A 4-bit adder implements an excess-3 to BCD code conversion. Draw the block schematic diagram to show the circuit interconnection. (4 marks)
- (a) Define each of the following with respect to digital-to-analog converter (DAC):
 - (i) resolution;
 - (ii) range.

(2 marks)

- (b) (i) Draw a labelled block schematic diagram of a successive approximation analogue-to-digital converter (ADC) and describe its operation.
 - (ii) State **one** advantage and **one** disadvantage of the ADC in b(i) compared to a counter based ADC.

(9 marks)

- (c) A 12-bit ADC is used to convert an analogue signal to digital form. Determine for the ADC, the:
 - (i) percentage resolution;
 - (ii) time taken to convert a half-scale analogue signal using a 2 MHz clock frequency if the ADC is:

2207/304 Oct JNov. 2016 4

692 10 68

- (I) counter based;
- (II) successive approximation.

(9 marks)

(a) Define each of the following with respect to memory devices:

910

- (i) access time;
- (ii) volatile.

(2 marks)

- (b) A semi-conductor RAM whose capacity is 16 Kx8 is implemented using 4 Kx8 RAM chips. Determine for the 4 Kx8 chips the:
 - (i) number of chips required;
 - (ii) number of address lines.
 - (iii) draw a labelled block schematic diagram for the memory implementation.

(10 marks)

- (c) With the aid of sketches, describe the storage and retrieval of data in a ferrite core memory cell. (8 marks)
- 8. (a) Define each of the following microprocessor addressing modes; stating an example in each case:
 - (i) register;
 - (ii) immediate;
 - (iii) direct.

(6 marks)

(b) Write an assembly language program segment to perform the following sequence:

add the BCD number 54H and 37H perform BCD correction multiply the result by 2 store the answer in memory location 1802H end.

(6 marks)

- (c) (i) List any two types of faults that occur in digital gates.
 - (ii) With the aid of a labelled diagram, describe how to test a NOR gate using alogic probe and a pulser.

(8 marks)

Instruction set of

8080/8085

OP CODE	MNEMONIC	OP CODE	MNEMONIC	OP.	MNEMONIC	OP.	MNEMONIC	OP CODE	MNEMONIC	OP.	MNEMO	NIC
				-		81	ADD C	AC	XRA II	D7	nsr :	,
00	NOP	28	DCX H	56	MOV D,A	82	ADD D	AD	XRA L	D8	RC	
01	LX1 B,D16 STAX B	2C 2D	DCR L	58	MOV E,8	83	ADD E	AE	XRA M	D9		
03	INX B	25	MVI LD8	59	MOV E.C	84	ADD H	AF	XRA A	DA	je A	\dr
04	INR 8	2F	CMA	5A	MOV E.D	85	ADD L	80	ORA 8	08	IN C	8
05	DCR B	30	SIM	58	MOV E.E.	86	ADD M	B1	ORA C	ac	CC A	\dr
06	MVI B.DB	31	LXI SPD16		MOV E.H	87	ADD A	82	ORA D	DD	-	
07	RLC	32	STA Adr	50	MOV E,L	88	ADC B	В3	ORA E	DE	SBI C	80
08	_	33	INX SP	5E	MOV E,M	89	ADC C	B4	ORA H	DF	RST 3	
09	DAD B	34	INR M	5F	MOV EA	8A:	ADC D	85	ORA L	EO	RPO	
· OA	LDAX B	35	DCR M	60	MOV H,B	88	ADC E	86	ORA M	EI	POP 1	1
- 08	DCX B	36	MVI M,D8	61	MOV H,C	80	ADC H	87	ORA A	E2	JPO /	Adr
00	INR C	37	STC	62	MOV H,D	80	ADC L	88	CMP B	E3	XTHL	
.00	DOR C	38.		63	MOV HE	8E	ADC M	89	CMP C	E4	CPO /	Adr
: OE	MV1 C.08	39	DAD SP	64	MOV HH	85	ADC A	BA	CMP D	E5	PUSH .	1
OF	RRC	3A	LOA Adr	65	MOV H,L	8G	SUB B	88	CMP E	E6	ANI (98
.10		38	DCX SP	66	MOV H,M	91	SUB C	BC	CMP II	E7	RST 4	1
- 11	LX1 0,016	3C	INR A	87	MOV H,A	92	SUB D	80	CMP L	E8	RPE	est.
12	STAX D	30	DCR A	68	MOV LA	93	SUB E	BE	CMP. M	€9	PCHL	
13	INX D	3E	MVI A,D8	69	MOV LC	94	SUB H	BF	CMP A	EA		Adr]
14	INR D	3F	CMC-	6A	MOV LD	95	SUB L	co	RNZ	EB	XCHG	
15	DCR 0	40	MOV 8,8	68	MOV LE	96	SUB M	Ct	POP B	EC	CPE	Adr
16	MVF D.D8	41	MOV B.C	80	MOV LH	97	SUB A	C2	JNZ Adr	EO	1	
17	RAL	42	MOV B.D	60	MOV L.L	98	S88 B	C3	JMP Adr	EE	1	D8.
18	***	43	MOV BE	68	MOV LM	98	S88 C	C4	CNZ Adr	EF		6.
19	DAD D	44	WON B'H	6F	MOV LA	9A	S88 0	CS	PUSH B	FO	RP	
1A	LDAX D	45	MOV B.L	70	MOV M,B	98	\$88 E	C6	AD1 08	F1		PSW
. 18	DCX D	46	MQV 8,M	71	MOV M,C	90	S8B H	C7	RST 0	F2		Artr
10	INR E	47.	MOV B,A	72	MOV M,D	90	S88 L	C8	RZ	F3	101	li lin
10	DRC E	48	MOV CB	73	MOV M.E	9E	SBB M	C9	RET Adv	F4		Adr PSW
18	MVI E,08	49	MOV C.C.	74	MOV M.H	9F	SBB A	CA	JZ	F5		D8
1F	RAR	4A	MOV C,D	75	MOV M,L	A0	ANA B	CG.	CZ Adr	F7		6
20	RIM	48	MOV C.E	76	HLT NOW MAN	Al		CD	CALL Ade	F8	RM	O
21	LXI H,D16		MOV CH		MOV MA	A2	ANA D	CE	ACI D8	F9	SPHL	
22	SHLO Adr	4D	MOV C,M	78	MOV A,B	A3	ANA H	CF	RST 1	FA		Adr
23	INR H	45	MOV CA	7A	MOV A,D	A5	ANA L	DO	RNC	FB	EI	
24	DCR H	50	MOV D.B	78	MOV A,E	A6	ANA M	D1	POP D	FC		Adr
26	MVI H,D8	51	MOV D.C	7C	MOV A,E	A7	ANA A	D2	JNC Adr	FD		
27	DAA	52	MOV D.D	70	MOV A,L	A8	XRA B	D3	OUT DB	FE		08
28	JAA	53	MOV DE	78	MOV A,M	A9	XRA C	D4	CNC Adr	FF	Townson Co.	7
29	DAD H	54	MOV DH	75	MOV A,A	AA.	XRA D	D5	PUSH D			
2A	LHLD Adr	55	MOV DIL	80	ADD 8	AB	XRA E	D6	SUI D8			
						1				L	1	

D8 = constant, or logical/arithmetic expression that evaluates to an 8-bit data quantity. D16 = constant, or logical/arithmetic expression that evaluates to a 16-bit data quantity. Adr = 16-bit address.

THIS IS THE LAST PRINTED PAGE.