2207/304
DIGITAL PRINCIPLES AND MICROPROCESSORS
Oct./Nov. 2009

Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL DIPLOMA IN AERONAUTICAL ENGINEERING AVIONICS (COMMUNICATION AND NAVIGATION OPTION)

DIGITAL PRINCIPLES AND MICROPROCESSORS

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet; Electronic calculator. Intel 8085 Instruction Set.

Answer any FIVE of the EIGHT questions in this paper. All questions carry equal marks.

This paper consists of 7 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

2	75 2	11.550											
l .	(a)	(i)	Convert the following numbers into binary:										
			I. 15.75 ₁₀										
			II. 65.7 ₈ .										
		(ii)	Evaluate the following; showing all the workings:										
			I. BEBC ₁₆										
			I. BEBC ₁₆ - 94EF ₁₆										
			16										
			II. 11011 ₂	(0									
			x 11110 ₂	(9 marks)									
	(b)	(i)	If the ASCII code for the letter A is 41H, deduce the ASCII code BOY	s for the word:									
		(ii)	For the one byte number, 10011101 ₂ , determine its decimal value	e if it is in:									
			I. one's complement;										
			II. two's complement;										
			III. unsigned.										
		(iii)	Convert the binary number, 110101, into Gray code.	(11 marks)									
2.	(a) An Engine has four fail-safe sensors, S ₁ , S ₂ , S ₃ and S ₄ . The engine should kee running unless any of the following conditions arise:												
		• if o	ancor S. is activated:										
		 if sensor S₂ is activated; if sensor S₁ and sensor S₃ are activated at the same time; 											
			ensor S_3 and sensor S_4 are activated at the same time.										
			e the output, F, to be logic '1' for engine running and the sensors to be at logic '1' activation. For the system:										
		(i)	derive the truth table for engine run;										
		(ii)	with the aid of a K-man derive a minimum logic expression for	engine									

(iii)

implement the expression in a(ii) using NAND gates only.

(12 marks)

(b) (i) Prove the following rule of boolean algebra:

$$A + \overline{A}B = A + B$$

- (ii) For the circuit of Fig. 1:
 - I. derive the truth table; using positive logic;
 - II. derive the minimal binary logic expression.

(8 marks)

- 3. (a) For the R S NOR circuit of Fig. 2:
 - (i) derive the expression for the next state, Q(t + 1), in terms of the present state, Q, and the inputs R and S;
 - (ii) complete table 1;
 - (iii) modify the circuit to form a JK flip flop.

(10 marks)

Table 2

RS	PRESENT STATE (Q)	NEXT STATE $(Q(t+1))$
00	0	77.70
00	1 1 2	
01	0	The Control of the Co
01	1	
10	0	
10	1	
11	0	
11	1	

- 3. (b) For the circuit of Fig. 3:
 - (i) draw the timing diagram for the outputs Q₀, Q₁, Q₂ and the input clock CLK, for at least nine (9) clock cycles;
 - (ii) derive the sequence of counts generated;
 - (iii) determine the frequency of Q₂, if the clock frequency is 40Hz;
 - (iii) determine the frequency of Q_2 , the state any **two** disadvantages. (10 marks)

- 4. (a) (i) Draw a truth table for a 3 to 8 line decoder, with active high outputs.
 - (ii) With the aid of a truth table, show how a full -adder can be implemented by a 3- to 8 decoder and OR gates.
 - (iii) Draw the block schematic of the full-adder in a(ii). (12 marks)

	(b)	(i)	With the aid of a logic diagram, explain the operation of D flip-flo 4-bit synchronous Johnson counter.	op based,
		(ii)	State the advantage of the counter in b(i).	(8 marks
5.	(a)	(i)	Define the following with respect to a digital analogue converter (I. off-set error; II. sampling rate.	(DAC):
		(ii)	Draw a circuit diagram of a 4-bit, OP-AMP based, R - 2R DAC.	
		(iii)	In a 4-bit binary weighted DAC, the resistor for the most signification has a value of 25 K Ω . Determine the:	nt Bit (MSB)
			 values of the other input resistors; feedback resistor, R_f, if the maximum output Voltage is -3 input reference Voltage is +5V. 	.75V and the
				(11 marks)
	(b)	A 10 t signal (i) (ii)	oit Analogue to digital converter (ADC) is used to convert a half-scattle. Determine: the percentage signal resolution; the time taken to convert the signal, using a 1MHz clock frequency.	
			is: I. counter based;	y, if the ABC
			II. successive approximation.	(9 marks)
6.	(a)	Define (i) (ii) (iii)	the following with respect to memory devices: memory word; access time; volatile.	(3 marks)
	(b)	A semi	iconductor RAM chip is specified as 8K x 16. Determine for the ch	
		(ii)	number of data lines;	ip, the:
	(c)	(iii)	memory capacity in Kilobytes.	(5 marks)
		(i) (ii) (iii) (iv) (v)	All semiconductor memories are non-volatile. NMOS memory is a category of binary memory. EPROMS can be programmed and erased several times. All RAMs are volatile. SRAMs retain their stored data state as long as electric power is ma	iintained.
				(5 marks)
	(d)	With th	ne aid of a circuit diagram, describe the operation of the MOS static	RAM cell. (7 marks)

2207/304 5 Turn over

- (a) Draw a labelled block diagram of the internal architecture of an 8 bit microprocessor and state the function(s) of each part. (8 mark)
- (b) Define each of the following microprocessor addressing modes, illustrating each case with a one line instruction:
 - (i) immediate;
 - (ii) direct;
 - (iii) indexed. (6 marks)
- (c) Write an assembly language program to perform the following:
 - add, three 8-bit numbers, in consecutive memory locations, starting from location 3000H;
 - complement the result;
 - store the result in memory location 3008H.

(6 marks)

- 3. (a) (i) List any three faults found in a digital system.
 - (ii) With the aid of a labelled diagram, describe how to test a NAND gate using a logic probe and a pulser. (10 marks)
 - (b) Fig. 4 is a block schematic diagram of a decade counter and its seven segment display. A short circuit has occurred on the counter output Q_c to ground.
 - (i) Draw the truth table for the decoder/driver, when operating correctly.
 - (ii) Determine the counter output, with the fault.
 - (iii) Deduce the displayed count sequence of the display in b(ii). (10 marks)

Figure 4

Instruction set of

8080/8085

OP CODE	MNEMONIC		CODE	MN	MNEMONIC	OP CODE	MNEMONIC	OP	MNEMONIC		OP	E MNEMONIC		ОР	T	T	
00			28	DCY			-	+			CODE			CODE	MNEMONI		
01	LX1	B.D16	2C	DCX		56	MOV D,M	81	VD	D C	AC	XRA	11	D7	RST	2	
02	STAX		2D	DCR	L	57	MOV D,A	82	AD	D D	AD	XRA	L	D8	RC		
03	INX	В	2E	MVI	F 20	58	MOV E,B	83	AD	D. E	AE	XRA	M	D9	-		
04	INR	В	2F	CMA	L,D8	59	MOV E.C	84	1	D' H	AF	XRA	A	DA	JC	Adr	
05	DCR	В	30	SIM		5A	MOV E.D	85	ADI		BO	ORA	В	DB	IN	D8	
06	MVI	B,D8	31	LXI	SPD16	58	MOV E,E	86	ADI		B1	ORA	C	DC	CC	Adr	
07	RLC	_,	32	STA	Adr	5C	MOV E,H	87	ADI		B2	ORA	D	DD	-		
08	_		33	INX	SP	5D	MOV E,L	88	ADO		B3	ORA	E	DE	SBI	D8	
09	DAD	В	34	INR	M	5.E	MOV E,M	89	ADO		B4	ORA	H	DF	RST	3	
0A	LDAX		. 35	DCR		5F	MOV E,A	8A.	ADO	D	B5	ORA	L	EO	RPO		
08	DCX	В	36		M	60	MOV H,B	88	ADO	E	86	ORA	M	E1	POP	Н	
ОС	INR	c	37	MVI	M.D8	61	MOV H,C	8C	ADO	H	B7	ORA	A	E2	JPO	Adr	
0D	DCR	C ,	38			62	MOV H.D	8D	ADC	L	B8	CMP	В	E3	хтн	L	
OE	MVI	C,D8	39	DAD	SP	63	MOV H,E	8E	ADC	M	69	CMP	C	E4	CPO	Adr	
0F	RRC	,	3A	LDA	Adr	64	MOV H,H	8F	ADC	; A	BA	CMP	D	E5	PUSH	Н	
10		1	38	DCX	SP	65 66	MOV H,L	8G	SUB	В	BB	CMP	E	E6	ANI	D8	
11	LXI	D.D 16	3C	INR	A	67	MOV H,M	91	SUB	С	BC	CMP	11	E7	RST	4	
12	STAX	D	3D	DCR	A	68	MOV H,A	92	SUB	D	BD	CMP	L	E8	RPE		
13	INX	D	3E	MVI	A,D8	69	MOV L.B	93	SUB	E	BE	CMP	M	E9	PCHL		
14	INR	D	3F	CMC	74,00	6A	MOV LC	94	SUB	Н	BF	CMP	A	EA	JPE	Adr	
15	DCR	0	40	MOV	B,8	6B	MOV L,E	95	SUB	L	CO	RNZ		EB	XCHO	3	
16	MVI	D,D8	41	MOV	B,C	6C	MOV L,E	96	SUB	M	C1	POP	В	EC	CPE	Adr	
17	RAL		42	MOV	B,D	6D	MOV L,L	97	SUB	A	C2	JNZ	Adr	ED			
18			43	MOV	B,E	6E	MOV L,L	98	SBB	В	C3	JMP	Adr	EE	ERI	D8	
19	DAD	0	44	MOV	B,H	6F	MOV LA	99	SBB	C	C4	CNZ	Adr	EF.	RST	5	
1A	LDAX	0	45	MOV	B,L	70	MOV M,B	9A	SBB	D	C5	PUSH	В	FO	RP		
18	DCX	D	46	MOV	ВМ	71	MOV M,C	98	SBB	E	CE	ADI	D8	F1	POP	PSW	
10	INR	E	47	MOV	ВА	72	MOV M,D	9C	SBB	н	C7	RST	0	F2	JP	Adr	
1D	DRC	E	48	MOV	C,B	73	MOV M,E	9D 9E	SBB	1.	C8	RZ		F3	Di		
1E	MVI	E,D8	49	MOV	c,c	74	MOV M,H	9F	SBB	M	C9	RET	Adı	F4	CP	Adr	
1F	RAR		4A	MOV	C,D		MOV M.L	AO	SBB	A	CA	·JZ		F5	PUSH	1	
20	RIM		48	MOV	C,E	76	HLT	A1	ANA	В	CB			F6	ORI	D8	
21 1	LXI	H,D16	1		C,H		MOV M.A	A2	ANA	1	cc	CZ	Adr	F7	RST	6	
22	SHLD	Adr	4D	MOV	C,L		MOV A,B	A3	ANA		CD	CALL		F8	RM		
23 1	NX	Н	4E	MOV	C,M		MOV A,C	A4	ANA		CE	ACI	D8	F9	SPHL		
24 1	NR	н	4F	MOV	C,A		MOV A,D	A5	ANA	1	CF	RST	1	FA	JM	Adr	
25 [DCR	н	50		D,B		MOV A,E	A6	ANA	i	DO	RNC		FB	E1		
26 N	IVN	H.D8	51	VOV	D,C		MOV A,H	A7	ANA		i	POP	0	- 1	CM	Adı	
77 [DAA		52		D,D	1	MOV A,L	A8		A		JNC	Adr	i			
			53		D,E		MOV A,M	A9	XRA	В		OUT	D8	i		D8	
1		1	54		D,H	1	MOV A,A	AA	XRA	C	1	CNC	Adr	FF	RST	7	
AL	HLD	Ad-	55	VON	1	1			,,,,m	D	D5	PUSH	D	1			

D8 = constant, or logical/arithmetic expression that evaluates to an 8-bit data quantity. D16 = constant, or logical/arithmetic expression that evaluates to a 16-bit data quantity. Adr = 16-bit address.

