Tasto

Phellow

2207/304

DIGITAL PRINCIPLES AND MICROPROCESSORS

Oct/Nov. 2004

Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN AERONAUTICAL ENGINEERING AVIONICS (COMMUNICATIONS AND NAVIGATION OPTION)

DIGITAL PRINCIPLES AND MICROPROCESSORS

3 hours

INSTRUCTIONS TO CANDIDATES:

You should have the following for this examination:

Answer booklet

Mathematical table/calculator

Answer any FIVE of the following EIGHT questions. All questions carry equal marks.

09 2004

This paper consists of 5 printed pages
© 2004, The Kenya National Examinations Council

1. Perform the following number conversions:

- (i) 11011110.101₂ to decimal
- (ii) 675.5_8 to binary

(4 marks)

Add 5C4D₁₆ to 3F9A₁₆ and convert the results to binary.

(4 marks)

(i) Add:

I 384 to 596 in BCD (8421) code.

II 63 to 52 in excess - 3 code.

(ii) Evaluate:

Acc. Multiplie

- (I) $1010_2 \times 1101_2$
- (II) $110110 \div 101_2$

(12 marks)

2. (a) (i) State any TWO merits of a NAND gate over an AND gate.

(ii) Implement the express F = A + B using NAND gates only.

(5 marks)

(b) (i) Draw the logic circuit for the Boolean equation:

$$F = \overline{C.(A + B) + D}$$

(ii) Using K' map, minimize the Boolean equation below as far as possible and hence draw the resultant logic gate:

$$A\,\overline{\mathrm{B}}\,\overline{\mathrm{C}}\,\overline{\mathrm{D}} + \overline{\mathrm{A}}\,B\,\overline{\mathrm{C}}\,D + A\,B\,\overline{\mathrm{C}}\,D + \overline{A}\,\overline{\mathrm{B}}\,\overline{\mathrm{C}}\,\overline{\mathrm{D}} + \overline{\mathrm{A}}\,\overline{\mathrm{B}}\,\mathrm{C}\,\overline{\mathrm{D}} + \overline{\mathrm{A}}\,\overline{\mathrm{B}}\,\mathrm{C}\,\overline{\mathrm{D}} + \overline{\mathrm{A}}\,\mathrm{B}\,\mathrm{C}\,\mathrm{D} + \overline{\mathrm{A}}\,\mathrm{B}\,\mathrm{C}\,\mathrm{D} + \overline{\mathrm{A}}\,\mathrm{B}\,\mathrm{C}\,\mathrm{D}$$

(6 marks)

- (c) (i) With the aid of a logic circuit, describe the operation of a basic 2 input TTL NAND gate.
 - (ii) Explain "propagation delay" as applied to logic intergrated circuits.

(9 marks)

- (b) (i) Describe the operation of a signature analyser.
 - (ii) Draw a flow diagram for the program algorithm below:

Set the total to Zero Repeat Input a number Add it to the total Until a Zero input Output the total.

(8 marks)

2207/302

5

Jw74=p

3.	(a)	(i)	List any TWO applications of shift registers.	
		(ii)	Draw a logic circuit of a 4 - bit serial - in parallel - out shift reg flip - flops and describe its operation.	ister using D- type
	a libraji	100		(8 marks)
	(b)	Explain the following as applied to digital counters:		
			as applied to digital counters:	
		(i)	Synchronous	
		(ii)	Asynchronous.	
	(c)	Draw	the truth table and timing diagrams of a modulo - 6 ripple binary	(4 marks) up - counter
Andre I c		Hence	e obtain the logic diagram.	(8 marks)
4.	(a)	(i)	Define the following as applied to digital memories:	
	inter Services		I Memory address	
10 m			II Volatile memory	
			III Access memory.	
		(ii)	With the aid of circuit diagram, describe the operation of a bipo cell.	lar RAM memory
	(b)	(i)	Draw o lobelled	(10 marks)
			Draw a labelled memory map for a memory unit consisting of: 2K ROM 1 from location 0000 ₁₆	
			6K Spare from location 0800 ₁₆	
			2K ROM2 from location 2000 ₁₆	
			61K RAM from location 2800 ₁₆	
		(ii)	A memory chip is configured as 16K x 16. Determine:	
			I the number of address lines	
			II the total memory capacity	
			III the size of the data bus.	
5.	(a)	(i)	Define the fill	(10 marks)
1.0		(1)	Define the following as applied to digital signal converters: I resolution	
	aming spr.ff)		II monotonicity	
	in.	(ii) .	With the aid of a labelled block diagram, describe the operation approximation analog-to-digital converter.	of a successive
2207/	304			(9 marks)
			3 Tur	n over

3. (a)

(b) (i) With the aid of a circuit diagram, describe the operation of a 4 - bit binary - weighted resistor digital-to-analog converter.
 (ii) An R/2R digital-to-analog converter is driven by the digital word 01111011₂. Determine the analog output voltage if the reference voltage is 9 volts.

(11 marks)

- 6. (a) (i) State any TWO applications of the output port in digital systems.
 - (ii) Explain "Software programmed" as applied to interfacing circuits.

(4 marks)

(b) For figure 1, explain the functions of the following pins:

- (i) CS
- (ii) Port B
- (iii) A_oA₁

(6 marks)

- (c) (i) Draw a labelled block diagram of an interrupt driven CPU with four peripheral and explain its operation.
 - (ii) Describe "Software polling" as applied to interfacing.

(10 marks)

- 7. (a) (i) List any TWO areas of applications of decoders in digital systems.
 - (ii) Draw the binary/octal decoder truth table and hence derive the logic circuit using AND gates.

(10 marks)

- (b) State, with reasons, the need for a parity checker circuit in digital systems.
 - (ii) Draw a logic circuit of a 4-bit parallel binary adder and describe its operation.

 (10 marks)
- 8. (a) (i) Explain how "Direct Memory Access" is implemented in a microprocessor unit.
 - (ii) Draw a labelled block diagram of the internal organisation of the Central Processing Unit CPU) and state the function of each unit.

(12 marks)

2207/304