2602/205
TELECOMMUNICATION
PRINCIPLES AND INDUSTRIAL
MEASUREMENTS
June/ July 2022
Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN ELECTRICAL AND ELECTRONIC ENGINEERING (TELECOMMUNICATION OPTION) MODULE II

TELECOMMUNICATION PRINCIPLES AND INDUSTRIAL MEASUREMENTS

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet:

Non-programmable scientific calculator.

This paper consists of EIGHT questions in TWO sections; A and B.

Answer any THREE questions from section A and any TWO questions from section B in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

Take: Velocity of electromagnetic waves in free space $c = 3 \times 10^8 \text{m/s}$

This paper consists of 5 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2022 The Kenya National Examinations Council

Turn over

SECTION A: TELECOMMUNICATION PRINCIPLES

Answer any THREE questions from this section.

- 1. (a) (i) State two:
 - (i) component parts of a telecommunication system;
 - (ii) services that use the ultra high frequency band.

(4 marks)

(b) Explain common channel signalling with respect to telephony.

(4 marks)

- (c) With the aid of a circuit diagram, describe the operation of a transistor mixer used in AM radio receivers. (6 marks)
- (d) A superheterodyne radio receiver has a local oscillator of frequency 1520 kHz and is tuned to a frequency of 1065 kHz. The highest modulating signal frequency at the transmitter is 4.5 kHz. Determine the:
 - (i) intermediate frequency;
 - (ii) frequency of the image signal;
 - (iii) minimum i.f. bandwidth.

(6 marks)

- 2. (a) State three causes of interference of radio waves propagated near the earth's surface.
 - (ii) With the aid of a ray diagram, describe tropospheric scatter propagation of radio waves.
 - (iii) State one demerit of the propagation mode in a(ii).

(10 marks)

- (b) A parabolic dish antenna has a mouth diameter of 1.5 m and is used at a frequency of 6.2 GHz. The power fed to the antenna is 3 W. Assuming the antenna efficiency is 65 percent, determine the:
 - (i) signal wavelength;
 - (ii) beamwidth between half-power points;
 - (iii) beamwidth between nulls;
 - (iv) gain;
 - (v) effective radiated power.

(10 marks)

3. (a) Explain reasons for using logarithmic units in solving problems in telecommunication systems. (2 marks)

2602/205 June/ July 2022

- (b) An amplifier with an input impedance of 70 Ω feeds a matched load of 150 Ω . The power gain of the amplifier is 48 dB and the input voltage is 120 μ Vrms. Determine the:
 - (i) input power in watts;
 - (ii) output power in dBm;
 - (iii) current through the load.

(8 marks)

- (c) (i) State three losses that occur in a transmission line.
 - (ii) Describe the construction of balanced twisted-pair cable.

(6 marks)

- (d) A transmission line has primary constants, $R = 15 \Omega/km$, L = 3.4 mH/km, G = 0 and C = 10 nF/km. Determine the characteristic impedance of the line at an operating frequency of 2 kHz. (4 marks)
- 4. (a) Define each of the following with respect to Frequency Modulation (FM):
 - (i) frequency deviation;
 - (ii) deviation ratio.

(2 marks)

(b) Figure 1 shows a circuit diagram of asymetrical mode of propagation of radio frequency noise (interference) into mains power supply. With the aid of a circuit diagram, explain how it can be minimized. (6 marks)

- (c) A 450 W carrier is amplitude modulated to a depth of 60 percent. The modulated signal is passed through an antenna having a resistance of 12 Ω . Determine the:
 - (i) total radiated power;
 - (ii) sideband power;
 - (iii) total current in the antenna;
 - (iv) percentage saving in power if the carrier is suppressed.

(8 marks)

3

- (d) The binary signal 1011 is multiplied by a sinusoidal signal to produce a minimum shift keying (MSK) wave. The binary signal is in the non-return to zero (NRZ) format. Sketch the waveforms for the:
 - (i) NRZ signal;
 - (ii) MSK signal.

(4 marks)

- 5. (a) (i) State **three** disadvantages of carbon microphones as compared to crystal microphones;
 - (ii) Draw a labelled diagram of a moving-coil loudspeaker and describe its operation.

(10 marks)

- (b) State any two types of signals produced by a function generator and sketch their waveforms. (6 marks)
- (c) A telecommunication equipment has an input signal voltage of 12 mV and an output noise voltage of 8 μ V. The signal-to-noise ratio at the output is 59 dB. Determine the:
 - (i) signal-to-noise ratio at the input, in dB;
 - (ii) noise figure.

(4 marks)

SECTION B: INDUSTRIAL MEASUREMENTS

Answer any TWO questions from this section.

- 6. (a) State two
 - (i) demerits of potentiometric accelerometers;
 - (ii) merits of piezoelectric accelerometers.

(4 marks)

- (b) With the aid of a circuit diagram, describe the operation of a Linear Variable Differential Transformer (LVDT) accelerometer. (6 marks)
- (c) The piston of an engine has a mass of 0.03 kg and a diameter of 12 mm. The maximum acceleration of the piston is 2.5 g, where g = acceleration due to gravity. Taking the spring constant as 120 N/mm and g = 9.81 m/s², determine the:
 - (i) force required to accelerate the piston;
 - (ii) pressure exerted on the piston;
 - (iii) vertical distance moved by the piston;
 - (iv) sensitivity of the system.

(8 marks)

(d) State two sources of errors in the measurement method in (c).

(2 marks)

- 7. (a) (i) State four properties of thermocouples that are useful in industrial applications.
 - (ii) Sketch the curve of output e.m.f against temperature of a copper-iron thermocouple and explain its shape.

(8 marks)

(b) A thermistor has a resistance of 1285 Ω at a temperature of 304 K. When measuring temperature, its resistance changes to 2135 Ω at the measured temperature. The resistance-temperature relationship is given by the expression:

$$R = R_o \exp \left[\beta \left(\frac{1}{T} - \frac{1}{T_o}\right)\right],$$

where: R = resistance at the measured temperature, T;

 R_o = resistance at the reference temperature, T_o ; β = constant for the thermistor material = 3260.

Determine the value of the measured temperature in °C.

(4 marks)

- (c) (i) With the aid of a labelled diagram, describe liquid level measurement using hydrostatic pressure method.
 - (ii) The maximum pressure at the bottom of a tank is 344.2 kN/m² at an atmospheric pressure of 250 kN/m². Taking the density of the liquid as 1200 kg/m³ and acceleration due to gravity as 9.81 m/s², determine the height of the liquid in the tank. (8 marks)
- 8. (a) (i) Define humidity and state how it is expressed.
 - (ii) With the aid of a labelled diagram, describe the operation of a resistive hygrometer.

(8 marks)

- (b) With the aid of a labelled diagram, explain the principle of operation of force-balance pneumatic controllers. (6 marks)
- (c) A single electrical-resistance strain-gauge of resistance 120 Ω and gauge factor of 2.0 is bounded to steel having an elastic-limit stress of 400 MN/m² and modulus of elasticity of 200 GN/m². If the steel is subjected to a change of stress equal to 0.1 of the elastic range, determine the:
 - (i) change of stress in steel;
 - (ii) change of strain in steel;
 - (iii) change in resistance of the strain gauge.

(6 marks)

THIS IS THE LAST PRINTED PAGE.