2507/206 COMMUNICATION AND TELECOMMUNICATION SYSTEMS June/July 2017

Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN AERONAUTICAL ENGINEERING (AVIONICS OPTION)

MODULE II

COMMUNICATION AND TELECOMMUNICATION SYSTEMS

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Scientific calculator;

Answer booklet.

This paper consists of EIGHT questions in TWO sections; A and B.

Answer any THREE questions from Section A and any TWO questions from Section B in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

Take velocity of light, $C = 3.0 \times 10^8 \, m/s$, Free space wave impedance $\pounds = 377\Omega$

This paper consists of 5 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

SECTION A: COMMUNICATION SYSTEMS

Answer any THREE questions from this section.

χ.	(a)	Outline thre	e functions of radio transmitters.	(3 marks)		
	(b)	With the aid	of a block diagram, describe the operation of a high level AM tr	ansmitter. (8 marks)		
	(c)	(i) State	two merits of frequency modulation.	(2 marks)		
			M transmitter has power carrier of 50 W and when modulated leoidal signal, it increases the power to 59 W .	by a		
		Determine the :				
		(I) (II) (III) (IV)	depth of modulation; maximum power; minimum power; ratio of maximum to minimum values of the wave envelope.	(7 marks)		
2.	(a)	State three n	merits of digital TV.	(3 marks)		
	(b)	With the aid of a diagram, describe the process of interlaced scanning in television screens. (7 mag)		vision (7 marks)		
	(c)	A TV system uses 625 interlaced scan lines occurring at a rate of 25 frames per second. The horizontal scanning rate is 15,625 Hz. 80% of one complete horizontal scan time is used to display the video and 20% is used in horizontal blanking. The horizontal resolution, $R_{\rm H}$, is 512 lines and only 580 horizontal scan lines are displayed on the screen.				
		Determine th				
		(ii) time	for one complete horizontal scan; for one horizontal line scan; od for one horizontal line scan;			
		(iv) band	width.	(10 marks)		
3.	(a)	State three f	features of 3G Technology.	(3 marks)		
	(b)	Describe the following mobile phone technologies stating the type of gen case:		tion in each		
2507. June/J	/ 206 July 2017	(i) GSM (ii) WCI	1; DMA. 2	(6 marks)		

	(c)	Highlight the difference between WI-FI and WI-MAX technologies based	on:			
		(i) range;				
		(ii) data transfer rates.	(4 marks)			
	(d)	With the aid of a diagram, describe the principle of operation of a WI-FI no	etwork.			
			(7 marks)			
	(a)	State Kepler's law of satellite motion.	(3 marks)			
	(b)	Describe the following satellite orbits:				
		(i) geo-synchronous;				
		(ii) polar;				
		(iii) elliptical.	(9 marks)			
	(c)	A geostationary satellite is located 90°W. An earth station antenna is located at latitude of 35°W and longitude 100°W.				
		Determine the:				
		(i) angle between the satellite and antenna;				
		(ii) angle between radius of the earth and radius of the satellite path;				
		(iii) azimuth angle.	(6 marks)			
	(d)	State two applications of satellite systems.	(2 marks)			
<i>'</i> .	(a)	List three applications of radar systems.	(3 marks)			
	(b)					
		equipment (DME) radar.	(8 marks)			
	(c)	A radar system operating at 750 MHz over a range of 10 km produces a minim receivable power of $600 pW$. The antenna capture area is $5 m^2$ and the target				
		cross-sectional area is 16 m ² .				
		Determine the:				
		(i) peak pulsed power radiated;				
		(ii) range over which receivable power would reduce to $90 pW$.	(7 marks)			
	(d)	State two types of radar systems.	(2 marks)			
		Primory Law				
		secondary.				
		2+3				

June/July 2017

SECTION B: TELECOMMUNICATION PRINCIPLES

Answer any TWO questions from this section.

6.	(a)	Distinguish between diffraction and refraction as used in wave propagation.				
	(p)	11 F -7 die Diversit				
		(i) troposphere: -) lover lover to w at wome Part				
		(ii) stratosphere; -> second lave. (iii) ionosphere> weaks place 2. w	(9 marks)			
	(c)	The electric field strength at a receiving station is $10 \mu V/m$.				
		Determine the:				
		(i) magnetic field strength;				
		(ii) power density of the station;				
		(iii) amount of power incident on a receiving aerial with an effective area	of 5 m ² . (6 marks)			
	(d)	Highlight three functions of the Communication Authority of Kenya (CAK).	. (3 marks)			
7.	(a)	Define polarisation as used in radio wave propagation.	(1 mark)			
		direction or vatio work	(Timark)			
	(b)	With the aid of diagrams, describe the following types of radio waves:				
		(i) surface wave; Tx Rx 2 direct 2 de 2 d				
		(ii) space wave.	(8 marks)			
	(c) *	With the aid of waveforms, describe the binary phase shift keying modulation				
		technique.	(7 marks)			
	(d)	A fibre optic cable has a core refractive index of 1.48 and a cladding refraction index of 1.46.				
		Determine the:				
		(i) numerical aperture;				
		(ii) critical angle.	(4 marks)			

- 8. (a) State **three** advantages of matched transmission lines. (3 marks)
 - (b) In a lossless transmission line, the velocity of propagation is $2.5 \times 10^8 m/s$. The capacitance of the line is $30 \ pF/m$.

Determine the:

- (i) inductance of the line per metre;
- (ii) phase constant at 100 MHz;
- (iii) characteristic impedance of the line. (6 marks)
- (c) A rectangular waveguide measures $3 cm \times 4.5 cm$ internally. It has a 10 GHz signal propagated through it:

Determine the:

- (i) cut-off wavelength;
- (ii) wavelength of propagated signal;
- (iii) guide wavelength.
- (d) With the aid of a polar diagram, describe the Yagi-Uda array. (4 marks)

(7 marks)

THIS IS THE LAST PRINTED PAGE.