2506/303 2507/303 ENGINEERING MATHEMATICS III June/July 2022 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN AERONAUTICAL ENGINEERING (AIRFRAMES AND ENGINES OPTION) (AVIONICS OPTION)

MODULE III

ENGINEERING MATHEMATICS III

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination: Answer booklet;

Mathematical tables/Non-programmable scientific calculator; Drawing instruments.

This paper consists of EIGHT questions

Answer any FIVE questions in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 4 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2022 The Kenya National Examinations Council

Turn over

1. (a) (i) If x_n is an approximation to the root of the equation $x^3 - 2x + 5 = 0$, use Newton-Raphson method to show that a better approximation to the root is given by:

$$x_{n+1} = \frac{2x_n^3 - 5}{3x_n^2 - 2}$$

(ii) Hence determine the root of the equation correct to four decimal places, taking $x_0 = -2.5$.

(12 marks)

(b) Table 1 satisfies a polynomial f(x).

Table 1

x	-1	0	1	2	3	4	5	6	7	8
f(x)	-13	-5	-5	<u>-7</u>	-5	7	35	85	163	275

- (i) Use Newton-Gregory forward difference interpolation formula to determine f(x).
- (ii) Hence calculate f(1.4).

(8 marks)

2. (a) Evaluate $\int_{-1}^{1} \int_{0}^{x} \int_{1}^{x+y} dz dy dx$

(7 marks)

- (b) Use triple integral to determine the volume of the solid bounded by the surface $z=9-x^2-y^2$ and z=0. (7 marks)
- (c) Use Green's theorem to evaluate

$$I = \oint_{c} \{ (4x+y)dx + (3x-2y)dy \}$$

where C is the boundary of the trapezium with vertices A(0, 1), B(5, 1), C(3, 3), D(1,3). (6 marks)

3. (a) Evaluate the following double integrals:

(i)
$$\int_0^1 \int_0^y (x+y^2) dx dy$$

(ii)
$$\int_{-3}^{3} \int_{0}^{\sqrt{9-x^2}} (x^2 + y^2) dy dx$$

(8 marks)

- (b) Evaluate $\int_{R} \int x dy dx$ where R is the region bounded by the curve $y = 8 + 2x x^2$ and the line y = x + 2. (12 marks)
- 4. (a) (i) Show that the vector field $\underbrace{F} = (2x+3y+5)\underbrace{i}_{\underline{i}} + (3x+3y^2+4)\underbrace{j}_{\underline{i}}$ is a conservative vector field.
 - (ii) Determine the potential function f(x,y) for the vector field \mathcal{E} in a(i).
 - (iii) Hence evaluate the line integral $\int_{c} \vec{F} \cdot d\vec{r}$ from (1, 2) to point (5, 7). (12 marks)
 - (b) Evaluate $\int_s \int x^2 ds$ where s is the portion of the plane 2x + 2y + z = 2 lying in the first octant $(x \ge 0, y \ge 0, z \ge 0)$. (8 marks)
- 5. (a) Given that $\begin{bmatrix} 3 & 4 & 5 \end{bmatrix}^T$ is an eigen vector corresponding to an eigen λ_1 of the matrix

$$A = \begin{bmatrix} 4 & b & -8 \\ 1 & 2 & 1 \\ a & 2 & 3 \end{bmatrix},$$

where a and b are constants. Determine:

- (i) values of a, b and λ_1 .
- (ii) other eigen values of matrix A.

(12 marks)

- (b) Matrix A is a 2×2 square matrix and has eigen values $\lambda_1 = 6$ and $\lambda_2 = 1$ with corresponding eigen vectors $\underline{e}_1 = (4 \ 1)^T$ and $\underline{e}_3 = (1 1)^T$ respectively. Determine:
 - (i) modal matrix (M) and spectral matrix (A).
 - (ii) matrix A.

(8 marks)

6. (a) Given the periodic function

$$f(x) = \begin{cases} x^2; & -\pi \le x \le \pi \\ f(x+2\pi) & \end{cases},$$

- (i) sketch the graph of the function for $-\pi \le x \le \pi$;
- (ii) determine its Fourier series;
- (iii) by letting $x = \pi$ in the series obtained in (ii), show that $\frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2}$

(14 marks)

- (b) Expand f(t)=1+t for 0 < t < 1 in a half-range Fourier sine series. (6 marks)
- 7. (a) Given the vector field $\vec{F} = z\vec{i} + x\vec{j} + y\vec{k}$ and S is a surface of the hemisphere $x^2 + y^2 + z^2 = 1$ above x y plane, verify stoke's theorem. (16 marks)
 - (b) Evaluate $I = \int_c (3x+4y)dx + (5x-2y)dy$ along the path y=2x from point A(1, 2) to B(3, 6). (4 marks)
- 8. (a) Given $f(z) = (x^3 axy^2 + 4x^2 + by^2 + 5) + j(3x^2y y^3 + 8xy)$ is analytical, determine the values of constants a and b.
 - (ii) Express $f^{1}(z)$ in terms of z.

(12 marks)

- (b) Given $f(z) = \frac{z-j}{z+j}$ where z = x + jy,
 - (i) express f(z) in the form u(x, y) + jv(x, y).
 - (ii) describe the locus of the point if f(z) is always imaginary.

(8 marks)

THIS IS THE LAST PRINTED PAGE.