2506/202 2507/202 ELECTRONICS AND CONTROL SYSTEMS June/July 2022

Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN AERONAUTICAL ENGINEERING (AIRFRAMES AND ENGINES OPTION) (AVIONICS OPTION)

MODULE II

ELECTRONICS AND CONTROL SYSTEMS

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet;

Mathematical tables / Non-programmable scientific calculator;

Log-linear graph paper;

Drawing instruments.

This paper consists EIGHT questions in TWO sections; A and B.

Answer THREE questions from section A and TWO questions from section B in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 6 printed pages and 1 insert.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

SECTION A: ELECTRONICS

Answer THREE questions from this section.

1.	(a)	Define each of the following with respect to atomic structure of an atom:			
		(i) atomic number;			
		(ii) valency.	(2 marks)		
	(b)	With aid of a labelled diagram, describe the formation of a N-type semiconductor.			
			(6 marks)		
	(c)	(i) With aid of a V - I characteristic curve, explain the operation of a Z diode.	ener		
		(ii) State two applications of Zener diodes.	(8 marks)		
	(d)	(i) Explain the need for biasing transistors.			
		(ii) State two types of transistor bias.	(4 marks)		
2.	(a)	With aid of a circuit diagram, describe the operation of a transistor-based Hartley			
		oscillator.	(6 marks)		
	(b)	A Colpits oscillator has an inductor and capacitors in the tank circuit as, $L = 50$ mH, $C_1 = 150$ pF and $C_2 = 450$ pF. Determine the:			
		(i) effective capacitance;			
		(ii) frequency of oscillation;			
		(iii) feedback factor.	(6 marks)		
	(c)	A full-wave rectifier with a 220 V rms sinusoidal input has a load resistant Assuming ideal diodes, determine the:			
		(i) d.c voltage at the load;			
		(ii) required peak inverse voltage (PIV) of the diodes;			
		(iii) maximum current through each diode, during conduction;			
		(iv) power rating of each diode.	(8 marks)		
3.	(a)	Convert the hexadecimal number $E7B_{16}$ into:			
		(i) binary;			
		(ii) base 4;			
		(iii) octal;			
		(iv) decimal.	(8 marks)		

(b) Table 1 shows the truth table of a logic circuit.

Table 1

	Output			
A	В	C	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	х
1	0	0	1	х
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	х
1	1	1	0	1
1	1	1_	1	1

- (i) Using a K-map, derive the minimum logic expression for output F.
- (ii) Implement the output, F, using NAND gates only. (8 marks)
- (c) Simplify the following Boolean expression:

$$\overline{A} \cdot \overline{B} \cdot C + \overline{A + B + \overline{C}} + \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot D$$
 (4 marks)

- 4. (a) With aid of sketches, describe each of the following with respect to logic gates:
 - (i) noise margin;
 - (ii) propagation delay.

(6 marks)

- (b) (i) Draw the truth table for an S R flip-flop.
 - (ii) Draw a schematic block diagram to implement a 4-bit serial-in parallel-out (SIPO) shift register using D-flip flops.
 - (iii) State two applications of shift registers.

(8 marks)

(c) Draw a circuit diagram of a CMOS inverter and explain its operation.

(6 marks)

- 5. (a) (i) Draw truth table of a binary full-subtractor.
 - (ii) Realize the full subtractor logic circuit using:
 - I. 3-to-8 decoder and OR-gates;
 - II. 4-to-1 multiplexers.

(12 marks)

- (b) Define each of the following with respect to converter circuits:
 - (i) resolution;
 - (ii) conversion time.

(2 marks)

(c) With the aid of a schematic-block diagram, describe the operation of a successive approximation analog-to-digital converter. (6 marks)

SECTION B: CONTROL SYSTEMS

Answer TWO questions from this section.

- 6. (a) With aid of block diagrams, explain each of the following control systems:
 - (i) open loop;
 - (ii) feedback.

(8 marks)

(b) Figure 1 shows a block diagram of a control system.

Fig. 1

- (i) Determine the transfer function using block reduction techniques.
- (ii) Draw a signal flow diagram for the block diagram.

(10 marks)

(c) State two ways of modelling control systems.

(2 marks)

7. (a) With aid of a diagram, describe the Nyquist stability criterion.

(4 marks)

(b) State three merits of Bode plots.

(3 marks)

(c) A transfer function for a control system is described by:

$$G(s) = \frac{20}{s(s+5)(s+2)}$$

- (i) Determine the corner frequencies.
- (ii) Using asymptotic approximations, draw the Bode plot.
- (iii) From the Bode plot, determine the:
 - I. phase margin;
 - II. gain margin.
- (iv) Comment on the stability of the system.

(13 marks)

- 8. (a) Explain the following with respect to analog computing:
 - (i) amplitude scaling;
 - (ii) time scaling.

(4 marks)

(b) Identify each of the following block diagrams as used in analog computer simulation:

(2 marks)

(c) Draw analog computer diagrams to simulate the following simultaneous differential equations:

$$\ddot{y} - 6y - 3x = 0$$
$$\ddot{x} + 5\dot{x} + 2x = 6$$

(10 marks)

- (d) State:
 - (i) two control system compensation methods;
 - (ii) one characteristic of each method in (d)(i).

(4 marks)

THIS IS THE LAST PRINTED PAGE.