2506/102 2507/102 AIRCRAFT ELECTRICAL TECHNOLOGY June/July 2022 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN AERONAUTICAL ENGINEERING (AIRFRAMES AND ENGINES OPTION) (AVIONICS OPTION)

MODULE I

AIRCRAFT ELECTRICAL TECHNOLOGY

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet:

Mathematical tables / Non-programmable scientific calculator;

Drawing instruments.

This paper consists of EIGHT questions in TWO sections; A and B.

Answer THREE questions from section A and TWO questions from section B in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

Take: Permittivity of free space, $\varepsilon_0 = 8.854 \times 10^{-12} \, F/m$ Permeability of free space, $\mu_0 = 4\pi \times 10^{-7} \, H/m$

This paper consists of 8 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2022 The Kenya National Examinations Council

Turn over

SECTION A: AIRCRAFT ELECTRICAL INSTALLATION TECHNOLOGY

Answer THREE questions from this section.

1.	(a)	State times safety gears required in affectare maintenance work place.				
	(b)	Describe each of the following aircraft safety hazards:				
		(i)	turbulence;			
		(ii)	bird strike.	(4 marks)		
	(c)		aid of a labelled diagram, describe the split-parallel aircraft electrical poution system.	wer (7 marks)		
	(d)	(i)	State two types of batteries used in aircrafts.			
		(ii)	An aircraft battery is used to start it's engine. The starter draws a curre 1000 A for 30 seconds and the battery voltage remains at 12V during the period. Determine the:			
			(I) power delivered to the starter;			
			(II) electrical energy used to start the engine.	(6 marks)		
2.	(a)	List tl	hree qualities of aircraft electrical wiring cables.	(3 marks)		
	(b)	Draw	the wiring diagram of a one-way switch controlling one lamp.	(4 marks)		
	(c)	With	aid of a diagram, outline the procedure of making a britannia cable joint	(7 marks)		
	(d)	Draw the aircraft electrical symbols for each of the following:				
		(i)	antenna;			
		(ii)	shielding;			
		(iii)	radiations.	(6 1)		
				(6 marks)		

- 3. (a) State three merits of Bayonet Neil-Concelman (BNC) connectors. (3 marks)
 - (b) Describe each of the following wiring systems:
 - (i) conduit;
 - (ii) trunking.

(6 marks)

- (c) With aid of a labelled diagram, describe the operation of a thermal-type circuit breaker. (7 marks)
- (d) Outline the steps involved in crimping a cable.

(4 marks)

4. (a) State two advantages of ring over radial power circuits.

(2 marks)

- (b) Describe each of the following ground proximity warning system with reference to aircraft:
 - (i) mode 1;
 - (ii) mode 2.

(6 marks)

- (c) (i) State two benefits of structured cabling.
 - (ii) Outline the subsystems of structured cabling.

(8 marks)

(d) Figure 1 shows a smoke detector circuit used in aircraft. Explain its operation.

(4 marks)

5.	(a)	Describe each of the following aircraft lights:				
		(i)	navigation;			
		(ii)	strobe.	(6 marks)		
	(b)	(i) De	efine brightness with respect to illumination stating its units.	(2 marks)		
		(ii) A 100 W lamp emits 1,400 lumens. The lamp is placed in a globe of 40cm diameter to give uniform brightness of 250 milli-lumens/m ² in all directions.				
		Determine the:				
		(i)	flux emitted by the globe;			
		(ii)	flux absorbed by the globe;			
		(iii)	percentage of light absorbed by the globe.	(6 marks)		
	(c)	A floor measuring 30m x 10m is to be illuminated to 250 lux using a set of 300W lamps. The coefficient of utilization and the maintenance factor are 0.4 and 0.9 respectively. The luminous efficiency of each lamp is 14 lumen per Watt. Determine the:				
		(i)	total lumens;			
		(ii)	luminous flux emitted per lamp;			
		(iii)	number of lamps required.	(6 marks)		

SECTION B: ELECTRICAL ENGINEERING PRINCIPLES

Answer TWO questions from this section.

6. (a) State three basic SI units.

(3 marks)

(b) Figure 2 shows an electric circuit. Each cell has an emf of 9 V and internal resistance of 0.1Ω .

Fig. 2

Determine the:

- (i) equivalent emf of the combination;
- (ii) equivalent internal resistance;
- (iii) current, I;
- (iv) potential difference across resistor R.

(8 marks)

- (c) An indicating instrument has a resistance of 40 Ω and a maximum deflection when a current of 15 mA flows. Determine the value of resistance required to convert the instrument to:
 - (i) an ammeter with a maximum deflection of 50 A;
 - (ii) a voltmeter with a range 0 250 V.

(6 marks)

(d) State three demerits of attraction-type moving iron instruments.

(3 marks)

7. (a) State superposition theorem.

(2 marks)

(b) Figure 3 shows a resistive network. Using superposition theorem, determine the branch current I₁. (9 marks)

(c) State Lenz's law of electromagnetic induction.

(2 marks)

(d) Figure 4 shows a closed cast steel magnetic circuit. A coil of 200 turns is wound around the 6 cm length of the circuit and a current of 0.4 A flows.

Determine the:

- (i) reluctance of 6 cm long path;
- (ii) reluctance of 2 cm long path;
- (iii) total circuit reluctance;
- (iv) total flux in the circuit.

(7 marks)

- 8. (a) (i) Define 'dielectric' with reference to capacitors.
 - (ii) A parallel plate capacitor has a capacitance of 0.2 μ F. It is supplied with a voltage of 1.25 kV across its terminals. The dielectric has a relative permittivity of 6 and a dielectric strength of 50 mV/m. Determine the:
 - (I) thickness of the dielectric;
 - (II) area of the plates.

(5 marks)

- (b) (i) Define 'instantaneous value' with respect to alternating current.
 - (ii) An alternating voltage is given by the expression V = 282.8 sin 314 t volts.

Determine the:

- (I) peak voltage;
- (II) r.m.s voltage;
- (III) frequency;
- (IV) instantaneous voltage at t = 4 ms.

(7 marks)

- (c) A transformer has 600 primary turns and 150 secondary turns. The primary and secondary resistances are 0.25 Ω and 0.1 Ω respectively and the corresponding leakage reactances are 1.0 Ω and 0.04 Ω respectively. Determine the:
 - (i) equivalent resistance referred to the primary winding;
 - (ii) equivalent reactance referred to the primary winding;
 - (iii) equivalent impedance referred to the primary winding;
 - (iv) phase angle of the impedance.

(8 marks)

THIS IS THE LAST PRINTED PAGE.