2602/205 TELECOMMUNICATION PRINCIPLES AND INDUSTRIAL MEASUREMENTS Oct./Nov. 2021

Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN ELECTRICAL AND ELECTRONIC ENGINEERING (TELECOMMUNICATION OPTION)

MODULE II

TELECOMMUNICATION PRINCIPLES AND INDUSTRIAL MEASUREMENTS

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet;

Mathematical tables/Non programmable scientific calculator:

Smith chart:

Drawing instruments.

This paper consists of EIGHT questions in TWO sections: A and B.

Answer any THREE questions from section A and TWO questions from section B in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

Take: Velocity of electromagnetic waves in free space, $c = 3 \times 10^8 \text{ m/s}$

Boltzmans constant, $K = 1.38 \times 10^{-23} J/K$

This paper consists of 7 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

SECTION A: TELECOMMUNICATION PRINCIPLES

Answer any THREE questions from this section.

1.	(a)	Define each of the following with respect to amplitude modulation	on:		
		(i) lower sideband;			
		(ii) bandwidth.	(2 moules		
			(2 marks)		
	(b)	Show that the total radiated power, P_t , in amplitude wave is give where P_c = carrier power m = modulation index	en by $P_t = P_c \left(1 + \frac{m}{2}\right)$,		
		III — modulation mucx	(6 marks)		
	(c)	A 100 MHz carrier signal is frequency modulated by a 12V, 15 kHz sinusoin. The instantaneous carrier frequency varies between 99.92 MHz and 100.08. Determine the:			
		(i) peak-to-peak frequency deviation;			
		(ii) modulator sensitivity;			
		(iii) modulation index;			
		(iv) peak phase deviation.			
			(8 marks)		
	(d)	Draw a labelled block diagram of a QPSK modulator.	(4 marks)		
2.	(a)	State three types of external noise to a communication system. (3 m			
	(b)	A tuned circuit has an inductance of 6.5 μ H and a Q-factor of 7 at a frequency of 95 MHz and the operating temperature is 275 H determine the:			
		(i) dynamic resistance;			
		(ii) bandwidth;			
		(iii) noise voltage;			
		(iv) noise power.	(0,1)		
			(8 marks)		

(EM) radio

(c) Draw a labelled block diagram of a superheterodyne frequency modulation (FM) radio receiver and describe its operation. (9 marks)

3.**	(a)	Define each of the following with respect to antenna:			
		(i)	radiation pattern;		
		(ii)	front-to-back ratio;		
		(iii)	beam width.	(3 marks)	
	(b)	Outlin	ne the procedure of measuring the horizontal plane radiation pattern of	an antenna. (5 marks)	
	(c)	A load of impedance $Z_L = (24 - j18)\Omega$ is connected to a transmission learning characteristic impedance $Z_0 = 60 \Omega$. Use a Smith Chart to determine the			
		(i)	voltage reflection coefficient;		
		(ii)	voltage standing wave ratio;		
		(iii)	input impedance of a 0.2λ of the line.	(12 marks)	
.4.	(a)	Define	e each of the following with respect to propagation of radio waves:		
		(i)	refractive index;		
		(ii)	critical frequency;		
		(iii)	fading.		
				(3 marks)	

(5 marks

(b) With the aid of a ray diagram, describe space wave propagation of radio waves. (7 marks)

- (c) Figure 1 shows a block diagram of a telecommunication system. Taking the gain of block 1 = 23 db, loss in link 1 = -30 dB, input power to block 2 = 316 mW, output power from block 2 = 12.6 W and loss in link 2 = -42 dB. Determine the:
 - (i) output power from block 1;
 - (ii) input power to block 1;
 - (iii) gain of block 2;
 - (iv) overall gain or loss, in dB m.

(10 marks)

- 5. (a) State two:
 - (i) frequency bands used in communication systems;
 - (ii) uses of communication systems.

(4 marks)

- (b) Draw a labelled block diagram showing the organization of a centralized stored programme control (SPC) in telephone exchanges. (6 marks)
- (c) With the aid of a labelled diagram, describe the operation of a crystal microphone.

 (6 marks)
- (d) An r.f pulse signal, with a peak power of 10 kW, has a pulse width of 1 nS and a pulse duration of 1 mS. Determine the:
 - (i) percentage duty cycle;
 - (ii) average power.

(4 marks)

SECTION B: INDUSTRIAL MEASUREMENTS

Answer any TWO questions from this section.

6.	(a)	(i)	State three merits of the toothed rotor variable reluctance tachometer	er.
		(ii)	Describe angular speed measurement using a stroboscope.	(11 marks)
	(b)	Expla	ain the principle of pressure measurements using a diaphragm.	(3 marks)
	(c)	thick	ezoelectric crystal has dimensions of length = 3.0 mm, width = 2.5 mm ness = 1.2 mm. The voltage sensitivity of the crystal is 0.07 V-m/N and tage of 80 V when a force is applied to it. Determine the:	
		(i)	effective area of the crystal;	
		(ii)	pressure on the crystal;	
		(iii)	force applied.	(6 marks)
7.	(a)	Expla	ain the principle of operation of each of the following thermometers:	
		(i)	vapour pressure thermometer;	
		(ii)	constant volume thermometer.	(4 marks)
	(b)	sensit when	rmocouple made of tellurium and bismuth has a sensitivity of 572 μ V, tivity of tellurium being 500 μ V/°C. The output of the thermocouple subjected to a temperature difference between reference junction and heference junction temperature is 25 °C. Determine the:	is 85.8 mV
		(i)	sensitivity of bismuth;	
		(ii)	temperature difference;	
		(iii)	temperature of hot junction.	(6 marks)
	(c)		the aid of a labelled diagram, describe liquid level measurement using stric liquid level gauge.	the (7 marks)

(d) Figure 2 shows a diagram of a float system of measuring liquid level. Taking the density of the liquid as 1200 kg/m³, float diameter as 0.3 m and maximum depth (h) of immersion as 1.5 m, determine the maximum mass of the float. (3 marks)

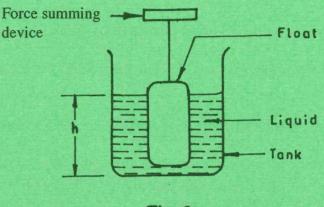
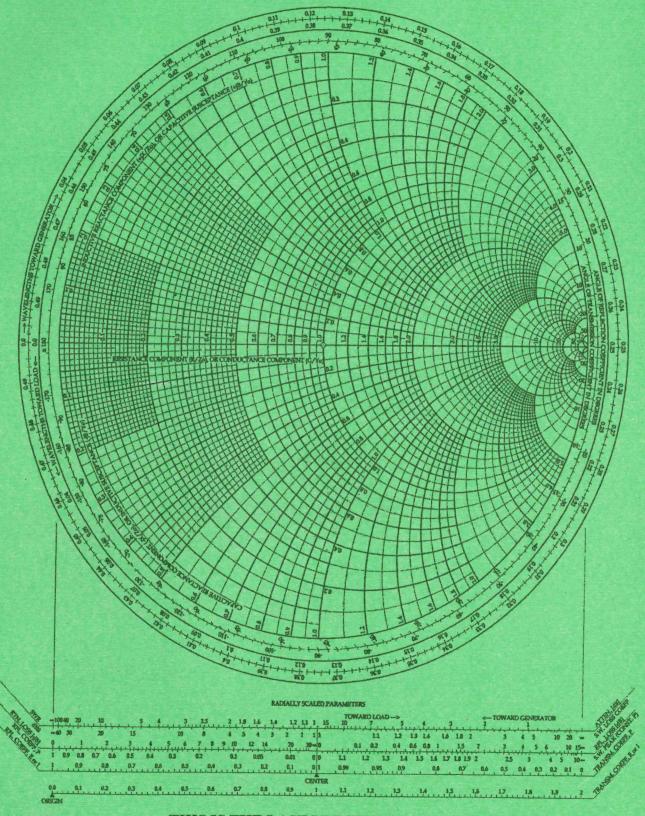


Fig. 2

- 8. (a) (i) State two merits of humistor hygrometers.
 - (ii) Explain the measurement of relative humidity using the wet-and-dry bulb method.

(6 marks)

- (b) (i) State two industrial applications of differential pressure transmitters.
 - (ii) Draw a labelled diagram of the transmitter in b (i) and outline its operation.


(8 marks)

- (c) A capilary tube viscometer has a capilary tube of diameter 1 mm and length of 30 cm under a head (h) of 20 cm. A quantity of 55 cm³ of the liquid was collected in a time of 440 seconds. Taking the density of the liquid 1080 kg/m³ and acceleration due to gravity as 9.81 m/s², determine the:
 - (i) flow rate of liquid through the capillary tube;
 - (ii) dynamic viscosity;
 - (iii) Reynolds number.

(6 marks)

Name:	Index No.:
***************************************	IIIUCA I 10.0

Smith Chart

THIS IS THE LAST PRINTED PAGE.