2506/103 2507/103 ENGINEERING MATHEMATICS I AND ENGINEERING SCIENCE I Oct/Nov. 2021 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN AERONAUTICAL ENGINEERING (AIRFRAMES AND ENGINES OPTION) (AVIONICS OPTION)

MODULE I

ENGINEERING MATHEMATICS I AND ENGINEERING SCIENCE I

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet;

Non-programmable Scientific calculator/ mathematical tables.

This paper consists of TWO sections; A and B.

Answer any THREE questions from section A and any TWO questions from section B.

All questions carry equal marks.

Maximum marks for each part of a question are as shown.

Candidates should answer the questions in English.

This paper consists of 5 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2021 The Kenya National Examinations Council

Turn over

SECTION A: ENGINEERING MATHEMATICS

Answer any THREE questions from this section.

- A bucket in the shape of a frustum of a cone has a height of 24 cm. If the top and 1. (a) bottom radii are 36 cm and 20 cm respectively, determine the capacity of the bucket (8 marks) in litres.
 - Given the complex numbers (b) $Z_1 = 2 + j3$, $Z_2 = 5 - j$ and $Z_3 = j8$,

determine, giving the answer in the form a + bj

- (i) $Z_3(Z_1-Z_2)$ (ii) $\sqrt[3]{Z_3}$

(8 marks)

- Convert the polar equation $r = \frac{2}{1 Cos\theta}$ to Cartesian. (4 marks) (c)
- Given that $\text{Log } 2_{10} = a$, $\log 3_{10} = b$, show that 2. (a)

$$\log_5 48 = \frac{4a+b}{1-a}$$

(5 marks)

Solve the equations: (b) $27^{4x-1} = 3(9^{3x+1})$

(5 marks)

Three forces F₁, F₂ and F₃ in newtons act on a shaft such that they satisfy (c) the simultaneous equations:

$$F_1 + F_2 = 5$$

 $F_1 + 3F_2 + 2F_3 = 1$
 $2F_1 - F_2 + F_3 = 20$

Use substitution method to solve the equations.

(10 marks)

- Given that $y = \frac{1}{x+1}$, determine $\frac{dy}{dx}$ from first principles. (5 marks) (a) 3.
 - A curve is defined parametrically by the equations; (b)

$$x = 9\cos\theta, y = 4\sin\theta$$

Determine the gradient of the curve at point where $\theta = \frac{\pi}{3}$, correct to three decimal places.

(5 marks)

Evaluate the integral: (c)

$$\int_0^{\frac{\pi}{6}} x \cos x \, dx$$

Correct to two decimal places.

(4 marks)

Determine the x - ordinate of the centroid of the region bounded by x - axis, (d) y - axis and the curve.

 $y = 4 - x^2$ in the first quadrant.

(6 marks)

4. (a) Shows that

$${}^{x}P_{2} \times {}^{x}C_{1} = x^{2}(x-1)$$

(3 marks)

Use bionomial theorem to expand $\frac{2x+1}{x+1}$ upto the term in x^3 . By setting x = 0.1 in the result in (i) evaluate $\frac{12}{11}$ correct to three decimal places. (b)

(ii)

(7 marks)

Given that $f(x) = \frac{x}{2x-1}$, find $f^{-1}(x)$. (c)

(4 marks)

(d) (i) Express Cosh-1 x in logarithmic form

(ii)Express Cosh-1 56 correct to four decimal places.

(6 marks)

5. (a) Prove the identities:

> $\sin 4\theta = 4\sin\theta \cos^3\theta - 4\cos\theta \sin^3\theta$; (i)

(ii)
$$\frac{\cos \theta}{1 + \sin \theta} = \sec \theta - \tan \theta$$

(7 marks)

(b) Given that $4\cos\theta + \sin\theta = R\sin(\theta + \alpha)$ (i) where R > 0 and $0^{\circ} \le 90^{\circ}$, determine the values fo R and α .

> (ii) Hence solve the equation;

$$4\cos\theta + \sin\theta = 2$$

for values of θ between 0° and 360° inclusive.

(7 marks)

(c) Solve the equation:

$$\cosh^2 \theta + 3 \sinh \theta - 3 = 0.$$

(6 marks)

SECTION B: ENGINEERING SCIENCE

Answer any TWO questions from this section.

- 6. (a) A force of 380 N parallel to an inclined plane is needed to move a body of mass 56 kg up the plane. Calculate the co-efficient of friction between the body and the plane if the plane is inclined at 15° to the horizontal.

 (Take g = 9.8 m/s²) (5 marks)
 - (b) (i) Define each of the following terms;
 - (I) mechanical advantage;
 - (II) velocity ratio
 - (ii) The efficiency of a simple machine is 75%. If a load of 2.4 KN is raised by an effort of 400 N, determine the velocity ratio. (6 marks)
 - (c) A sound wave travels at 330 m/s in air. If its frequency is 1000 Hz, determine its:
 - (i) Period;
 - (ii) Wavelength.

(4 marks)

- (d) A body of mass 0.05 kg is thrown vertically upwards at an initial speed of 39.2 m/s. Determine for a time period of 4 seconds the:
 - (i) height;
 - (ii) potential energy. (Take $g = 9.8 \text{ m/s}^2$)

(5 marks)

- 7. (a) Figure 1 shows a uniform beam of length 10 m and mass 40 kg supported at the ends A and B. If it carries three loads as shown, determine the:
 - (i) total downward force acting on the beam;
 - (ii) reaction at each end; R_A and R_B (Take $g = 9.8 \text{ m/s}^2$)

Fig.1

4

(8 marks)

2506/103 2507/103 Oct./Nov. 2021

(b)	(i)	State the:		
		(I)	Archimede's principle;	
		(II)	law of floatation	
	(ii)	A piece of plastic material floats in oil of relative density 0.8, with $\frac{2}{3}$ of its vosubmerged. Calculate the density of the material.		olume (5 marks
	(c)	(i) (ii)	Differentiate between an aneroid barometer and an altimeter. A U-tube manometer contains mercury of density 13600 kg/m³. If the difference between mercury levels is 120 mm, calculate the absolute pressure.	
			(Take $g = 9.8 \text{ m/s}^2$, and atmospheric pressure = 100 kPa)	(7 marks
8.	(a)	(i)	Write down the structure of:	
			(I) Propane;	
			(II) ethyne;	
			(III) ethene.	
		(ii)	The molecular formula of Hexane is C ₆ H ₁₄ . Determine its:	
			(I) empirical formula;	
			(II) molecular mass	
			(Take C = 12, H = 1)	(7 marks
	(b)	(i)	An atom of potassium has an atomic number 19 and mass number 40. Determine its number of:	
			(I) protons;	
			(II) electrons;	

- (III) neutrons
- Name the substances produced during the reaction between water and sodium. (ii) (5 marks)

- (c) A sample of gas occupies a volume of 2.4 dm³ at 27°C. Calculate its volume when its temperature is raised to 177°C at a constant pressure. (3 marks)
- (d) A spherical vessel has a diameter 1.5 M and contains carbon-dioxide at a temperature of -10°C. Calculate the mass of carbon-dioxide in the vessel if the pressure is 100 kPa. (Take the characteristics gas constant of carbon-dioxide as 184 J/KgK). (5 marks)

THIS IS THE LAST PRINTED PAGE.

2506/103 2507/103 Oct./Nov. 2021