2207/303 COMMUNICATION AND NAVIGATION SYSTEMS Oct./Nov. 2016 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN AERONAUTICAL ENGINEERING (AVIONICS) (COMMUNICATION AND NAVIGATION OPTION)

COMMUNICATION AND NAVIGATION SYSTEMS

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Mathematical tables/non-programmable scientific calculators; Answer booklet.

Answer any FIVE of the EIGHT questions in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as shown.

Candidates should answer the questions in English.

Take: Free space wave velocity, $C = 3 \times 10^8 \text{ m/s}$ Impedance of free space, £= 377 Ω

This paper consists of 5 printed pages.

Candidates should check the question paper to ascertain that all pages are printed as indicated and that no questions are missing.

- (a) List any two:
 - (i) errors associated with the very high frequency Omnirange (VOR) transceivers;
 - (ii) applications of the automatic direction finder.

(4 marks)

- (b) (i) With the aid of a labelled diagram, describe the operation of an Instruments Landing System (ILS).
 - (ii) A Doppler radar system, operating at 8GHz, scans a target over a range of 600 km in 20 secs. Determine the:
 - I. doppler frequency shift;
 - II. target relative velocity.

(13 marks)

- (c) A tracking radar system, operating at 800 MHz, produces a minimum receivable power of 100 pW over an unknown range. The antenna capture area is 4 m², the target cross-sectional area is 12 m², and the radiated power is 20 kW. Determine the radar range. (3 marks)
- 2. (a) (i) List any **two** advantages of frequency modulation (FM) over amplitude modulation (AM).
 - (ii) An AM wave varies between a maximum value of $E_{\rm max}$ and a minimum value of $E_{\rm min}$.
 - I. Sketch the wave form;
 - II. Derive the modulation index in terms of E_{max} and E_{min} . (9 marks)
 - (b) A double sideband AM transmitter drives a current of 18 A into an antenna when the depth of modulation is 60%. Simultaneous modulation by another sinewave increases the transmitter current to 21 A. Determine the:
 - (i) new depth of modulation;
 - (ii) transmission efficiency;
 - (iii) total radiated power.

(11 marks)

(a) Define each of the following as applied to radio receivers:

- (i) sensitivity;
- (ii) noise figure.

(2 marks)

(b) (i) Figure 1 shows a section of a radio receiver circuit. Describe its operation.

Fig. 1

- (ii) Draw a labelled bock diagram of a frequency modulation stereo receiver and describe its operation. (12 marks)
- (c) An AM radio receiver tuned to 900 kHz, has an i.f. of 465 kHz. Determine the:
 - (i) image signal frequency;
 - (ii) local oscillator frequency;
 - (iii) i.f. bandwidth if the tuned circuit Q-factor is 130.

(6 marks)

- 4. (a) (i) Table 1 shows the performance parameters of two antennas. State, with reason, which antenna is suitable for:
 - I. satellite communication
 - II. radiation of medium wave signals.

Table 1

Antenna	3dB Beam width	Gain (dB)		
A	1°	60		
В	120°	0		

- (ii) With the aid of a labelled diagram, describe the operation of a 4-element broadside antenna array. (12 marks)
- (b) A radiating antenna, 2 m long, has a radiation resistance of 75 Ω and a power gain of 30 dB. When driven by a current of 2 A, its signals are received 80 km away. Determine the:
 - I. radiated power;
 - II. electric field strength at the receiving point;
 - III. received power;
 - IV. transmission pathloss.

(8 marks)

- **5**. (a)
- (i) List any **two** services provided by satellite communication systems.
- (ii) Explain programmed tracking as applied to an earth satellite station antenna.

(5 marks) Turn over

Draw a labelled block diagram of a 6/4 GHz satellite transponder and describe its (b) operation. (7 marks) (c) (i) Describe the services provided by Inmarsat. (ii) A space satellite, located 36,000 km above the earth surface radiates 20 W using an antenna whose gain is 18dB. The receiving earth station antenna has an effective aperture of 14 m². Determine the: I. power flux density at the earth station; П. received power. (8 marks) List any two advantages of waveguides over coaxial cables when used in micro (a) (i) wave systems. With the aid of a labelled diagram, explain how impedance matching is achieved (ii) in waveguides using capacitive irises. (6 marks) With the aid of a labelled construction diagram, describe the operation of a ruby crystal (b) maser amplifier. (7 marks) A waveguide, with an internal width of 5 cm, has a characteristic impedance of 600 Ω (c) when the signal carried is the dominant TE_{1.0} mode. Determine the: (i) cut-off wavelength; (ii) signal wavelength; (iii) phase velocity. (7 marks) List any two advantages of the star topology over the ring topology data (a) (i) With the aid of a labelled diagram, describe the operation of a 4-terminal star (ii) data network. (7 marks) Draw a labelled block diagram of a Pulse Code Modulation (PCM) transmitter and (b) describe its operation. (7 marks) A data communication system has a dynamic range of 60 dB when transmitting an a.f. (c) signal of 6 sin $600 \pi t V$. Determine the: number of bits in the transmitted data; (i) (ii): signal-to-quantisation noise ratio; (iii) nyquist rate. (6 marks) State any two advantages of optic fiber over coaxial cables. (a) (i) (ii) With the aid of a labelled diagram, describe the transmission of light rays through a graded index optic fiber cable. (7 marks)

- (b) Table 2 shows data for an optical sensor.
 - (i) Plot the response curve.
 - (ii) Determine the:
 - I. transmission spectrum;
 - II. frequencies at which the output power is $55\mu W$;
 - III. output power at 425 THz.

(9 marks)

Table 2

Frequency (THz)	100	150	200	250	300	350	400	450	500	600
Output power (µW)	5	28	44	61	80	94	86	72	40	10

(c) An optical fiber has a core whose refractive index is 1.82 and cladding of refractive index of 1.64. The signal carried by the fiber has a wavelength of 0.70μm.

Determine the:

- (i) signal frequency
- (ii) numerical aperture.

(4 marks)

THIS IS THE LAST PRINTED PAGE.

5 425

524

500-719.