2521/203 2602/202 2601/202 2603/202 DIGITAL AND ANALOGUE ELECTRONICS II Oct./Nov. 2021 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING (POWER OPTION) (TELECOMMUNICATION OPTION) (INSTRUMENTATION OPTION)

MODULE II

DIGITAL AND ANALOGUE ELECTRONICS II

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet;

Drawing instruments;

Mathematical tables/non-programmable scientific calculator;

This paper consists of EIGHT questions in TWO sections, A and B.

Answer TWO questions from section A, and THREE questions from section B in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 6 printed pages and one insert.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

SECTION A: ANALOGUE ELECTRONICS II

Answer any TWO questions from this section.

1. (a) State three merits of light emitting diodes (LED).

(3 marks)

(b) Figure 1 shows a symbol of an electronic device.

- (i) identify the device;
- (ii) describe its principle of operation.

(6 marks)

(c) Figure 2 shows an electronic circuit. The voltage drop across the LED is 2 V.

Determine the:

- (i) current through the LED;
- (ii) power dissipated at the resistor.

(4 marks)

	(d)	A single stage amplifier has a voltage gain of 50. The collector load R_c is 400Ω at the input impedance is $1\mathrm{K}\Omega$. If two such stages are cascaded through R - C coupling determine the:	
		(i) effective load of the first stage;	
		(ii) gain of the first stage;	
		(iii) overall gain.	
			(7 marks)
2.	(a)	State three merits of electronic oscillators.	(3 marks)
	(b)	With the aid of a labelled diagram, describe the operation of a colpitts oscillator. (8 marks)	
	(c)	A tank circuit of a colpitts oscillator has capacitors C_1 and C_2 of capacitance 0.001 μF and 0.01 μF respectively and inductance L of 15 μH . Determine the:	
		(i) total capacitance;	
		(ii) operating frequency;	
		(iii) feedback fraction.	
			(6 marks)
	(d)	Draw a labelled block diagram of a three stage transistor amplifier.	(3 marks)
3.	(a)	State three merits of using a silicon controlled rectifier (SCR) as a s	switch. (3 marks)
	(b)	With the aid of a circuit diagram and output waveform, describe the SCR half-wave rectification. (6 marks	
	(c)	An SCR half-wave rectifier circuit has a gate current of 1 mA. The forward breakdown voltage of the SCR is 100 V. If an a.c supply voltage of peak value 200 V is applied, determine the:	
		(i) firing angle;	
		(ii) conducting angle;	
		(iii) average output voltage.	
	(d)	Explain each of the following as applied in operating amplifiers:	(7 marks)
		(i) input offset current;	
		(ii) output offset voltage.	
			(4 marks)

SECTION B: DIGITAL ELECTRONICS

Answer any THREE questions from this section.

- Perform each of the following: 4. (a)
 - convert 46.0625₁₀ to binary; (i)
 - convert $A 6 E.9 B_{16}$ to octal; (ii)
 - $(1111.0111)_2 + (101.1001)_2$. (iii)

(9 marks)

- State the number of bits in each of the following: (b)
 - nibble; (i)
 - (ii) byte.

(2 marks)

- Using 8-bits two's complement method perform each of the following: (c)
 - (i) $F_{16}-1E_{16}$;
 - $-14_{10}-18_{10}$. (ii)

(9 marks)

State three application areas of flip-flops. 5. (a)

(3 marks)

- Draw the truth table for a T-flip-flop. (b) (i)
 - Illustrate how a J-K flip-flop can be modified to a T-flip-flop. (ii)

(7 marks)

- Using D-flip flops, draw a block schematic diagram of a 4-bit serial-in-serial (i) (c) out (SISO) shift register.
 - Describe the operation of the shift register in c (i). (ii)

(8 marks)

Draw a labelled block diagram of a 2-to-4 decoder. (d)

(2 marks)

Table 1 shows Boolean expressions for OR gate function. Complete the table. (a) 6.

(4 marks)

Table 1

Boolean expression	Output
A+0	
A+1	
$A + \overline{A}$	
A+A	

2521/203 2601/202 Oct./Nov. 2021 2602/202

2603/202

- (b) Simplify each of the following Boolean expressions:
 - (i) $(\overline{X}+Y).(\overline{X}+Z);$
 - (ii) $A \overline{B} \overline{C} + A\overline{B}C + AB\overline{C} + ABC$.

(8 marks)

- (c) (i) Define fan-in with respect to logic gates.
 - (ii) Figure 3 shows a circuit diagram of a digital logic gate.

- (I) identify the logic gate family;
- (II) with the aid of the truth table, explain the working of the gate;
- (III) state the logic gate type.

(8 marks)

7. (a) A combinational logic circuit has three inputs and one output. The output is equal to logic 1 under the following conditions:

All inputs are equal to logic 1; None of the inputs are equal to logic 1; An ODD number of inputs are equal to logic 1.

- (i) obtain the truth table for the circuit;
- (ii) using a K-map, obtain a simplified expression for the sum-of-products (SOPs).
- (iii) draw the logic circuit using logic gates from the simplified expression in (ii).

(11 marks)

- (b) A logic circuit is defined by the Boolean function $Q = \overline{A}BC + A\overline{B}C$. Implement the circuit using:
 - (i) a decoder and gates only;
 - (ii) half adder logic circuits only.

(9 marks)

8. (a) Define a synchronous counter, citing an example.

(2 marks)

(b) Figure 4 shows a transition diagram of an asynchronous counter.

- (i) determine its MODULO;
- (ii) draw the counter using D flip-flops.

(5 marks)

- (c) (i) State **two** advantages of flash disks over magnetic tapes.
 - (ii) For a $32K \times 16$ microcomputer ROM memory determine:
 - (I) number of address lines;
 - (II) word size;
 - (III) capacity in kilobytes.

(7 marks)

(d) A $64K \times 8$ memory is made up of four regions ROM, RAM, PROM and I/O devices following in that order. If each region has equal capacity and ROM starts at address $0000\,\mathrm{H}$ draw the system memory map. (6 marks)

THIS IS THE LAST PRINTED PAGE.

2521/203 2602/202 2601/202 2603/202 Oct./Nov. 2021