2601/201 2602/201 2603/201 CONTROL SYSTEMS AND PROGRAMMABLE LOGIC CONTROLLERS Oct./Nov. 2021

Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING (POWER OPTION) (TELECOMMUNICATION OPTION) (INSTRUMENTATION OPTION)

MODULE II

CONTROL SYSTEMS AND PROGRAMMABLE LOGIC CONTROLLERS

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet;

Drawing instruments;

Mathematical tables/non-programmable scientific calculator;

Loglinear paper.

This paper consists of EIGHT questions in TWO sections, A and B.

Answer any THREE questions from section A, and any TWO questions from section B in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 8 printed pages and one insert.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

SECTION A: CONTROL SYSTEMS

Answer any THREE questions from this section.

- 1. (a) Define each of the following elements of a closed loop system:
 - (i) correction element;
 - (ii) process element;
 - (iii) measurement element.

(3 marks)

(b) Figure 1 shows a diagram of a control system. Derive the transfer function of the system; $\frac{X_{(s)}}{F_{(s)}}$. (6 marks)

Fig. 1

(c) Figure 2 shows a block diagram of a multi-input control system. Derive an equation relating the inputs $\theta_{i(s)}$, $\theta\delta_{1(s)}$, $\theta\delta_{2(s)}$ to output $\theta_{0(s)}$. (11 marks)

Fig. 2

2. (a) Figure 3 shows an electrical network. Show that its transfer function is given by:

$$\frac{V_{0(s)}}{V_{i(s)}} = \frac{1}{T_1 T_2 S^2 + T_1 S + 1} \text{ if } \frac{L}{R} = T_1 \text{ and } CR = T_2.$$
 (9 marks)

(b) (i) Explain a signal flow graph;

(ii) Figure 4 shows a signal flow graph of a control system. Using Mason's gain formula, determine its transfer function. (11 marks)

3. (a) Define each of the following test input signals:

- (i) step input;
- (ii) ramp;
- (iii) acceleration.

(3 marks)

- (b) On the same axis, sketch labelled response graphs of a second order system to a unit step input for each of the following damping:
 - (I) underdamped;
 - (II) overdamped;
 - (III) critically damped.
 - (ii) A servo system for position control has the closed loop transfer function:

$$\frac{6}{s^2+2s+6}$$

Determine each of the following if the input is suddenly moved:

- (I) natural frequency;
- (II) damping factor;
- (III) time constant;
- (IV) percentage overshoot;
- (V) type of damping.

(13 marks)

- (c) Distinguish between poles and zeros with respect to complex transfer functions stating significance of their position in pole-zero plot. (4 marks)
- 4. (a) (i) State **two** necessary conditions for a system to be stable with reference to Routh's stability criterion.
 - (ii) The open loop transfer function of a unity feedback system is given by:

$$G_{(s)} = \frac{K}{(s^2 + 3s)(s^2 + s + 1)}$$

Determine the range of K for which the system is stable.

(11 marks)

(b) Obtain an analog computer flow diagram to solve the following second order simultaneous differential equations:

$$\ddot{x} + 5\dot{x} + 4x = 5$$
$$\ddot{y} - 6y - x = 0$$

(7 marks)

- (c) Define each of the following with respect to analog computers:
 - (i) time scaling;
 - (ii) amplitude scale factor.

(2 marks)

5. (a) A unity feedback control system is described by:

$$G_{(s)} = \frac{3}{s(1+0.05s)(1+0.2s)}$$

For $\omega(rad/sec)$ values 0, 0.1, 0.5, 1, 5, 10 and 20.

- (i) construct an asymptotic log-magnitude plot and an exact phase plot;
- (ii) from the bode plot, determine the:
 - (I) phase margin;
 - (II) gain margin;
 - (III) phase cross over frequency;
 - (IV) gain cross over frequency;
 - (V) stability.

(14 marks)

- (b) A control system has a loop gain $G_{(s)}H_{(s)} = \frac{50}{(s+2)(s+10)}$. If a step input of 5° is applied, determine the:
 - (i) steady state error;
 - (ii) error coefficient.

(6 marks)

SECTION B: INDUSTRIAL PROGRAMMABLE LOGIC CONTROLLERS

Answer any TWO questions from this section.

- 6. (a) (i) State three areas of applications of PLCs.
 - (ii) Explain the working of each of the following:
 - (I) inductive sensors for detection of metallic objects;
 - (II) ultrasonic sensors for measurement of object distance.

(9 marks)

(b) (i) Distinguish between logical and continuous PLC output and for each case, state an application area.

Oct./Nov. 2021

- (ii) Figure 5 shows an circuit diagram of a PLC output interface.
 - (I) identify the type of interface;
 - (II) state the function of components Q, R and S in the circuit.

(8 marks)

Fig. 5

(c) State three PLC programming devices.

(3 marks)

7. (a) Figure 6 shows a ladder diagram for a system controlling the cyclic movement of an engine piston. Write its equivalent instruction list. (12 marks)

Fig. 6

- (b) Explain the function of each of the following SCADA components:
 - (i) field data interface devices;
 - (ii) communications network;
 - (iii) central host computer;
 - (iv) operator workstations.

(8 marks)

- 8. (a) With an aid of labelled diagram, describe the operation of multi-drop mode Highway Addressable Remote Transducer (HART) network communication configuration.

 (6 marks)
 - (b) (i) With reference to Twisted Pair (TP) cables, define each of the following and explain how each is minimized:
 - (I) cross talk;
 - (II) cancellation.
 - (ii) With the aid of a labelled diagram, explain ring topology data communication when networking industrial devices. (11 marks)
 - (c) Table 1 shows a partially filled TCP/IP layer model table. Redraw and complete the table. (3 marks)

Table 1

Layer	Functionality
4	
3	
2	Internet/Network
1	

THIS IS THE LAST PRINTED PAGE.

2601/201 2603/201 2602/201

8

Oct./Nov. 2021