2506/302 FLIGHT MECHANICS June/July 2019 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN AERONAUTICAL ENGINEERING (AIRFRAME AND ENGINES OPTION)

MODULE III

FLIGHT MECHANICS

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet;

Drawing instruments;

Mathematical tables/ Non-programmable scientific calculator.

This paper consists of EIGHT questions.

Answer FIVE questions in the answer booklet provided.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 3 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

(20 marks) Discuss how a space shuttle re-enters the atmosphere and lands. 1. With reference to gyroscopes, explain each of the following terms: 2. (a) rigidity in space; (i) precession. (ii) (4 marks) With the aid of a labelled sketch, discuss the construction and principle of operation of (b) (16 marks) the artificial horizon. Discuss each of the following jet engine assemblies: 3. (10 marks) centrifugal flow compressor; (a) (6 marks) (b) turbine: (4 marks) combustion chamber. (c) With the aid of labelled sketches, describe stall characteristics on thin wings under each of the 4. following: (6 marks) low speed stall; (a) (4 marks) formation of a separation bubble; (b) (4 marks) laminar flow separation; (c) (6 marks) variation of critical angle of attack with free stream mach number. (d) Discuss the checks carried out during the execution of a flight test on a new aircraft before 5. (20 marks) acceptance by a commercial aircraft operator. With the aid of labelled sketches, differentiate between a stream tube and a tube of flow 6. (a) (6 marks) with reference to fluid flow. Discuss each of the following with reference to fluid flow: (b) path lines; (i) (ii) time lines;

- (iii) streak lines;
- (iv) stream lines.

(8 marks)

(c) Steady - state flow exists in a pipe that undergoes a gradual expansion from a diameter of 3 inches to a diameter of 11 inches. The density of the fluid in the pipe is constant at 40.6 m/ft³. If the flow velocity is 56.7 ft/sec in the 3 inches section, determine the flow velocity in the expanded section. (6 marks)

- 7. (a) With the aid of labeled sketches, explain the behaviour of supersonic flow when it passes through each of the following:
 - (i) convex corner;
 - (ii) shock wave.

(15 marks)

- (b) With the aid of a labeled sketch, explain the effects of the change in free stream at the tip of sweepback wings. (5 marks)
- 8. (a) With the aid of a labelled sketch, explain Kepler's second law of planetary motion.

 (6 marks)
 - (b) Explain how low polar orbit and geostationary artificial satellites are maintained in space. (9 marks)
 - (c) With the aid of a labeled sketch, show how the weight varies with increase in altitude compared to the weight on earth's surface. (5 marks)

THIS IS THE LAST PRINTED PAGE.