2506/303 2507/303 ENGINEERING MATHEMATICS III June/July 2019 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN AERONAUTICAL ENGINEERING (AIRFRAMES AND ENGINES OPTION) DIPLOMA IN AERONAUTICAL ENGINEERING (AVIONICS OPTION)

MODULE III

ENGINEERING MATHEMATICS III

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:
Answer booklet;
Drawing instruments;
Mathematical tables/Non-programmable calculator.
This paper consists of EIGHT questions.
Answer FIVE questions in the answer booklet provided.
Maximum marks for each part of a question are as shown.
Candidates should answer the questions in English.

This paper consists of 3 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

Use the Newton-Raphson method to solve the equation: 1. (a)

$$x^4 - 12x + 7 = 0$$
 near 1.9 correct to six decimal places. (11 marks)

Table 1 represents a polynomial f(x). (b)

Table 1

x	1.5	2	2.5	3	3.5	4	
f(x)	3.375	7	13.625	24	38.875	59	

Use the Gregory-Newton forward difference interpolation to determine f(2.4).

(9 marks)

- Determine a matrix whose eigen values are $\lambda_1 = 2$, $\lambda_2 = 1$ and $\lambda_3 = -1$ with 2. (a) corresponding eigen vectors $\underline{e}_1 = (131)^T$, $\underline{e}_2 = (321)^T$ and $\underline{e}_3 = (101)^T$ (11 marks) respectively.
 - A linear time invariant system is modelled by a vector-differential equation (b)

$$\frac{d\underline{x}}{dt} = \begin{bmatrix} 4 & 1 \\ 3 & 2 \end{bmatrix} \underline{x}$$

Determine the state transition matrix $\phi(t)$.

(9 marks)

Expand f(x) = x, $0 \le x \le \pi$ in half-range sine series. 3. (a)

- (8 marks)
- Determine the Fourier series of $f(t) = \pi + t^2, -\pi \le t \le \pi$ (b)

(12 marks)

- Given that $U(x,y) = 4x^2 5x 4y^2$ 4. (a)
 - show that U(x,y) is harmonic; (i)
 - determine a conjugate harmonic function V(x,y) such that f(z) = u + jv(ii) is analytic.

(12 marks)

The circle |z|=2 is mapped into the w-plane by the transformation: (b)

$$W = \left(\frac{Z+j}{Z-2j}\right)$$

Determine the:

- image of the circle in the W-plane; (i)
- (ii) centre and radius of the image circle.

(8 marks)

5. (a) Determine the work done in moving a particle once round the circle

$$x^2+y^2=9$$
, $Z=0$ by the force field
$$F=(2x-y-z)i+(x+y-z^2)\tilde{j}+(3x-2y+4z)k \tag{9 marks}$$

(b) Verify Green's theorem in the plane for $\oint_c (10x^2 - 8y^2)dx + (5y - 6xy)dy$; where c is boundary of the region defined by:

$$x = 0, y = 0 \text{ and } x + y = 1.$$
 (11 marks)

- 6. (a) Use a double integral to determine the volume bounded by the xy plane; the paraboloid $2Z = x^2 + y^2$ and the cylinder $x^2 + y^2 = 4$. (7 marks)
 - (b) Find the surface area of the sphere $x^2 + y^2 + z^2 = 9$ lying inside the cylinder $x^2 + y^2 = 3y$. (13 marks)
- 7. (a) Use the divergence theorem to evaluate $\int \int_s \underline{F} o d\underline{s}$, where $\underline{F} = x^3 \underline{i} + y^3 \underline{j} + Z^3 \underline{k}$ and s is the surface of the sphere $x^2 + y^2 + z^2 = 9$. (7 marks)
 - (b) Verify Stokes' theorem for the vector field, $F = (2x y)i yzj y^2zk$ over the upper half of the surface of $x^2 + y^2 + z^2 = 1$ bounded by its projection on the xy plane.

 (13 marks)
- 8. (a) Determine the half-range Fourier sine series of the function f(x) = x, $0 \le x \le 2$.
 - (ii) By setting x = 1 in (i) show that $\frac{\pi}{4} = \sum_{k=1}^{\alpha} \frac{(-1)^{k+1}}{2k-1}$

(10 marks)

(b) Determine the eigen values and the corresponding eigen vectors of matrix

$$A = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$$
 (10 marks)

THIS IS THE LAST PRINTED PAGE.