2506/203 2507/203 ENGINEERING MATHEMATICS II June/July 2020 Time: 3 hours

2506 203 Auframe and Engines

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN AERONAUTICAL ENGINEERING

(AIRFRAMES AND ENGINES OPTION) (AVIONICS OPTION)

MODULE II

ENGINEERING MATHEMATICS II

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet;

Mathematical tables/Non-programmable scientific calculator.

Answer any FIVE of the following EIGHT questions.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 4 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

- 1. (a) Given the vectors $\underline{A} = -2\underline{i} + 3j + 2\underline{k}$ and $\underline{B} = 3\underline{i} j + 5\underline{k}$, determine:
 - (i) a unit vector perpendicular to \underline{A} and \underline{B} ;
 - (ii) the angle between \underline{A} and \underline{B} .

(9 marks)

- (b) A scalar field is given by $\phi = x^2z^2 + 2y^3$. Determine, at the point (1, -1, 2):
 - (i) $|\nabla \phi|$
 - (ii) the directional derivative of ϕ in the direction of the vector $\mathbf{A} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$.

 (7 marks)
- (c) Determine the divergence of the electric field vector $\underline{E} = (x^2 + 2y^2) \underline{i} + (y^2 + z) \underline{j} + (x^2 z^2) \underline{k}$ at the point (1, 1, -1). (4 marks)
- 2. (a) Given the matrices $A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 2 & -1 \\ 2 & 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 & -2 \\ 1 & -1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$,
 - (i) determine a matrix C = 4A 2B;
 - (ii) show that $(BA)^T = A^T B^T$.

(10 marks)

(b) Three currents, I₁, I₂ and I₃ in amperes, in a d.c network satisfy the simultaneous equations:

$$I_1 + 2I_2 - I_3 = 5$$

 $-I_1 + 3I_2 + 2I_3 = 12$
 $2I_1 - I_2 + I_3 = 1$

Use the inverse matrix method to solve the equations.

(10 marks)

- 3. (a) Show that the general solution of the differential equation $x \frac{dy}{dx} = y + x^2 y$ may be expressed in the form $y = A x e^{\frac{1}{2}x^2}$, where A is an arbitrary constant. (8 marks)
 - (b) The charge q(t) on the plates of a capacitor satisfies the differential equation $\frac{d^2q}{dt^2} + 3\frac{dq}{dt} + 2q = \sin t \,. \text{ Use the D-operator method to find an expression for } q(t) \,,$ given that when t=0, q=0 and $\frac{dq}{dt}=0$. (12 marks)

- 4. (a) Given $z = x^3 \cos\left(\frac{y}{x}\right)$, show that $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 3z$. (5 marks)
 - (b) The power dissipated in a resistor of resistance R Ohms is given by $P = \frac{V^2}{R}$ Watts, where V is the voltage across the resistor in volts. Use partial differentiation to determine the percentage charge in P if V increases by 2% and R increases by 3%. (5 marks)
 - (c) Locate the stationery points of the function $z = x^3 + 6xy + 3y^2 + 6$, and determine their nature. 8 + 6xy + 3y + 6 (10 marks)
- 5. (a) (i) Use Maclaurins theorem to expand $\sin\left(x + \frac{\pi}{6}\right)$ as far as the fourth term.
 - (ii) Determine the approximate value of $\sin 33 \frac{1}{2}$ ° correct to four decimal places, using the result in (i). (10 marks)
 - (b) (i) Expand $x^3 + 2x^2 3x + 1$ in a Taylor series about the point x = 1.
 - (ii) Hence, evaluate the integral $\int_{0}^{3} x^{3} + 2x^{2} 3x + 1 dx$

$$\int_{2}^{3} \frac{x^{3} + 2x^{2} - 3x + 1}{(x - 1)^{2}} dx.$$
 (10 marks)

- 6. (a) Find the:
 - (i) Laplace transform of $f(t) = t \cos 6t$;
 - (ii) inverse Laplace transform of $F(s) = \frac{s+1}{(s-1)(s^2+5)}$. (9 marks)
 - (b) The circuit in figure 1 is dead prior to switch closure at t=0.

Fig.1

Use Laplace transforms to determine expressions for the:

- (i) charge q(t) on the capacitor;
- (ii) current i(t) in the circuit, for $t \ge 0$.

(11 marks)

Turn over

- 7. (a) Show that the general solution of the differential equation $(x^2 + y^2) \frac{dy}{dx} = 2xy$ may be expressed in the form $x^2 + y^2 = cy$, where c is an arbitrary constant. (9 marks)
 - (b) Use the method of undetermined coefficients to solve the differential equation $\frac{d^2x}{dt^2} + 5\frac{dx}{dt} + 4x = e^{-2t}$, given that when t = 0, x = 0 and $\frac{dx}{dt} = 0$. (11 marks)
- 8. (a) Table I shows marks scored by 113 students in a mathematics test.

Table I

Marks scored	0-6	7 - 12	13 - 18	19 - 24	25 - 30	31 - 36	37 - 42
Frequency	6	11	25	35	18	12	6

Determine the:

- (i) mean;
- (ii) mode;
- (iii) median.

(9 marks)

(b) A continuous random variable x has a probability density function f(x) defined by

$$f(x) = \begin{cases} cx(10-x), & 0 < x < 1 \\ 0, & elsewhere \end{cases}$$

Determine the:

- (i) value of the constant c;
- (ii) mean of x;
- (iii) variance of x.

(11 marks)

THIS IS THE LAST PRINTED PAGE.