2521/102 2602/103 2601/103 2603/103

ENGINEERING MATHEMATICS I

June/July 2020 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN ELECTRICAL AND ELECTRONIC ENGINEERING (POWER OPTION) (TELECOMMUNICATION OPTION) (INSTRUMENTATION OPTION)

MODULE I

ENGINEERING MATHEMATICS I

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet:

Drawing instruments;

Mathematical tables/Non-programmable scientific calculator.

This paper consists EIGHT questions.

Answer any FIVE questions.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 4 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

- 1. (a) Express the equation of the parabola $y^2 = 8 4x$ in polar form. (5 marks)
 - (b) Solve the equation $4^{2x} 4^{x+1} + 3 = 0$, correct to three decimal places. (7 marks)
 - (c) Three currents I_1 , I_2 and I_3 in amperes flowing in an electric circuit satisfy the simultaneous equations:

$$2I_1 + 3I_2 - 4I_3 = -4$$
$$3I_1 + 4I_2 - I_3 = 8$$
$$I_1 - 5I_2 + I_3 = -6$$

Use the method of elimination to determine the values of the currents. (8 marks)

- 2. (a) Simplify the expressions:
 - (i) $\frac{(1-x)^{\frac{1}{2}} (1-x)^{-\frac{1}{2}}}{(1-x)^2}$

(ii)
$$\frac{\log 125 - \frac{1}{2} \log 25 + \log 625}{\log 3125 + \frac{1}{2} \log 25}$$
 (7 marks)

- (b) Solve the equations:
 - (i) $13.2(12^{2x+4}) = 16$, correct to four decimal places.

(ii)
$$\log_x 2 - \log_4 x + \frac{7}{6} = 0$$
. (13 marks)

- 3. (a) Given the functions f(x) = 9x and g(x) = x + 2, determine:
 - (i) fg(x)

(ii)
$$(fg)^{-1}(9)$$
. (6 marks)

- (b) By expressing $\sinh^{-1}x$ in logarithmic form, determine the value of $\sinh^{-1}(0.2)$. (7 marks)
- (c) Solve the equation $4\cosh 2x \sinh 2x = 4$ correct to three decimals places. (7 marks)
- 4. (a) Five components are to be chosen from 7 resistors and 6 diodes. Determine the number of ways in which the components can be selected so that there are at least 3 resistors in the choice. (5 marks)

- (b) Find the term in x^6 in the binomial expansion of $(3x-2)^{14}$, and determine its value when $x = \frac{1}{10}$, correct to three decimal places. (5 marks)
- (c) (i) Use the binomial theorem to expand $\left(\frac{1-x}{1+2x}\right)^{\frac{1}{3}}$ up to the term in x^2 .
 - (ii) Hence, evaluate $\left(\frac{0.8}{1.4}\right)^{\frac{1}{3}}$, correct to three decimal places. (10 marks)
- 5. (a) Differentiate $f(x) = \frac{1}{4x}$, from first principles. (5 marks)
 - (b) Given that $z = \frac{x+y}{x-y}$, show that $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = \frac{4(x+y)}{(x-y)^3}$. (6 marks)
 - (c) Locate the stationary points of the function $z = x^3 9x^2 4y^2$ and determine their nature. (9 marks)
- 6. (a) Given that $\sin A = \frac{4}{5}$ and $\cos B = \frac{8}{10}$, where A and B are acute angles, determine the values of:
 - (i) $\cos(A-B)$;
 - (ii) $\cot 2B$ (6 marks)
 - (b) Solve the equation $3\cos 2\theta \sin \theta + 2 = 0$, for values of θ between 0° to 360° inclusive. (7 marks)
 - (c) The angle of depression of a ship viewed from the top of a 65 metre vertical cliff is 22° . If the ship sails away from the cliff a distance x metres, the angle of depression from the top of the cliff is 17° . Determine the distance x. (7 marks)
- 7. (a) Evaluate the intergrals:
 - (i) $\int_0^{\frac{\pi}{2}} \frac{3}{1 + \cos x} \ dx$
 - (ii) $\int_0^{\pi} x^2 \sin x dx$
 - (iii) $\int_{1}^{2} \frac{2}{x^{2}\sqrt{1+x^{2}}} dx$ (12 marks)
 - (b) Sketch the region bounded by the curve $y = x^2 2$ and the line y = -4 3x and use integration to determine its value. (8 marks)

- 8. (a) Given the complex numbers $z_1 = 2 + j$ and $z_2 = 5j$, determine $\frac{z_2}{z_1}$, expressing the a answer in exponential form. (6 marks)
 - (b) Use DeMoivre's theorem to show that $\sin^5 \theta = \frac{1}{16} (\sin 5\theta 5\sin 3\theta + 10\sin \theta)$. (6 marks)
 - (c) If z = x + jy, determine the equation of the locus defined by $\arg\left(\frac{z+3}{z-2}\right) = \frac{\pi}{4}$. (8 marks)

THIS IS THE LAST PRINTED PAGE.